for CONNECTED / SHARED / AUTONOMOUS VEHICLES

DR PANAGIOTIS ANGELOUDIS

SIMULATION MODELS
Research in Connected, Shared & Autonomous Vehicles

Dr Panagiotis Angeloudis
Senior Lecturer in
Transport Systems & Logistics
Intelligent Systems,
Network Optimisation,
Autonomous Driving,
Infrastructure Design

Dr Marc Stettler
Lecturer in
Transport & Environment
Transport Emissions,
Energy Recovery Systems,
Connected Vehicles
ACES Simulation – Modelling Streams

Traffic & Dynamics
- Operational / Tactical Level
- **Tools:** VISSIM, Advisor CarMaker, etc.
- Driver behaviour and vehicle dynamics
- Traffic control & ITS
- Vehicle emissions, Energy consumption

Logic & Interactions
- Tactical / Strategic Level
- **Tools:** Delos (bespoke & developed at ICL)
- Emphasis on Agent Logic & Interactions
- Concept of Operations Driven
- Infrastructure Interdependencies
Model Development – Data Collection

Tailpipe Emissions (CO₂, NOₓ, PM)

Acceleration/Speed Sensors

Engine Behavior (OBD / CAN Bus)

GPS Location

Road Type (camera)

- **Ride Comfort Model**
 \(f(\text{road, speed, acceleration}) \)

- **Vehicle Emissions Model**
 \(f(\text{speed, acceleration, vehicle}) \)

- **Kinetic Energy Recovery**
 \(f(\text{acceleration, vehicle}) \)

Vehicle Behaviour Model

AV Traffic Simulation Model
Model Development – Data Collection

- Emission data (PEMS)
- Ride comfort data (HVM200)
- Driver perception (Questionnaires)
- GPS Traces (Speed, Trajectories)
- CAN bus / OBD feeds (Vehicle Systems)
PEMS Emissions – Data Analysis

![Graph showing the relationship between speed (km/h), acceleration (m/s²), and NOx output (mg/s).]
Ride Comfort– Data Analysis

Basicentric Axes

Weighted RMS acceleration

\[a'_{w} = \left(\frac{1}{T} \int_{0}^{T} a_{w}^{2}(t) \, dt \right)^{1/2} \]
Model Calibration - Emissions

Network Geometry

NOx emissions

CO2 emissions
Model Calibration - Vehicle Dynamics

Acceleration / Speed Profile

Deceleration / Speed Profile

![Graph showing acceleration and speed profile](image1)

![Graph showing deceleration and speed profile](image2)
Penetration Rate Modelling

O% CAV

100% CAV
Hybrid – Electric Propulsion for HGVs
Hybrid – Electric Propulsion for HGVs
(A)CES Platform Design Aspects

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Behaviour</td>
<td>Mode Choice, User Preferences, Vehicle Dynamics</td>
</tr>
<tr>
<td>Competitive Behaviour</td>
<td>Market Structure (Monopoly / Competition)</td>
</tr>
<tr>
<td>Tariff Structure</td>
<td>Pricing Mechanisms – Surging Behaviour</td>
</tr>
<tr>
<td>Interaction with Public Transport Modes</td>
<td>Integration, Competition, Mode Choice</td>
</tr>
<tr>
<td>Energy Management</td>
<td>Refuelling, Recharging, Infrastructure Interactions</td>
</tr>
</tbody>
</table>
Information Flow Modelling

- Vehicle Behaviour
- Assignment
- Travel Behaviour
- Trip Pricing
- Charging
- Mode Choice
- Public Transport
Ongoing Case Study – TNC Pricing

Assignment
- Optional Ride-Matching

Pricing
- Adaptive Surge Pricing Heuristic

Mode Choice
- Nested Logit (Private, Shared, PT)

Market Structure
- TNC Monopoly + Public Transport

Routing
- ClusterStar

Graph

AV TNC Mode Share by Total Vehicle Number

- **AV TNC Mode Share [%]**
- **Vehicles**

- Line A
- Line B

Imperial College London
CENTRE FOR TRANSPORT STUDIES | TRANSPORT SYSTEMS & LOGISTICS GROUP
Ongoing Case Study – TNC Pricing

<table>
<thead>
<tr>
<th>ASSIGNMENT</th>
<th>Optional Ride-Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRICING</td>
<td>Adaptive Surge Pricing Heuristic</td>
</tr>
<tr>
<td>MODE CHOICE</td>
<td>Nested Logit (Private, Shared, PT)</td>
</tr>
<tr>
<td>MARKET STRUCTURE</td>
<td>TNC Monopoly + Public Transport</td>
</tr>
<tr>
<td>ROUTING</td>
<td>ClusterStar</td>
</tr>
</tbody>
</table>

Pricing Heuristic

- Adaptive Surge Pricing Heuristic

Market Structure

- TNC Monopoly + Public Transport

Mode Choice

- Nested Logit (Private, Shared, PT)

Assignment

- Optional Ride-Matching

Diagram

AV TNC Mode Share per Scenario

- A (average)
- A (all scenarios)
- B (average)
- B (all scenarios)

Time

- 10:00
- 12:00
- 14:00
- 16:00
- 18:00
- 20:00
- 22:00

May 31, 2018

AV TNC Mode Share [%]

- 0
- 10
- 20
- 30
- 40
- 50
- 60
Ongoing Case Study – TNC Pricing

Assignment
- Optional Ride-Matching

Pricing
- Adaptive Surge Pricing Heuristic

Mode Choice
- Nested Logit (Private, Shared, PT)

Market Structure
- TNC Monopoly + Public Transport

Routing
- ClusterStar

Average Waiting Time for Scenario A

- A - Private (average)
- A - Private (all scenarios)
- A - Shared (average)
- A - Shared (all scenarios)

Average Waiting Time [Minutes]

Time

May 31, 2018
THANK YOU

Imperial College
London

P.ANGELOUDIS@IMPERIAL.AC.UK