ITF's work on shared mobility, policy implications from four cities

Luis Martinez
(with Olga Petrik, Francisco Furtado and Jari Kauppila)

IEA ACES modelling workshop
14 June 2018, Paris, France
How can shared mobility help addressing the current challenges of urban mobility, exploring recent emerging technologies, governance and societal trends?
Shared modes specification

<table>
<thead>
<tr>
<th>Mode</th>
<th>Booking</th>
<th>Access time</th>
<th>Max. waiting time (depending on distance)</th>
<th>Max. total time loss (depending on distance)</th>
<th>Vehicle type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Taxi</td>
<td>Real time</td>
<td>Door-to-door</td>
<td>5 minutes (≤ 3 km), up to 10 minutes (≥ 12 km)</td>
<td>Detour time + waiting time, from 7 minutes (≤ 3 km), up to 15 minutes (≥ 12 km)</td>
<td>Minivan of 8 seats rearranged for 6 seats, with easy entry/exit</td>
</tr>
<tr>
<td>Taxi-Bus</td>
<td>30 minutes</td>
<td>Boarding and alighting up to 400 m away from door, at points designated in real time</td>
<td>Tolerance of 10 minutes from preferred boarding time</td>
<td>Minimum linear speed from origin to destination (15 km/h)</td>
<td>Minibuses with 8 and 16 seats. No standing places</td>
</tr>
</tbody>
</table>
Qualitative comparison of transport modes

<table>
<thead>
<tr>
<th>Service type</th>
<th>Access</th>
<th>On-board time</th>
<th>Waiting</th>
<th>Transfers</th>
<th>Comfort</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Car</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐</td>
</tr>
<tr>
<td>Public transport</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐</td>
</tr>
<tr>
<td>and/or</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐</td>
</tr>
<tr>
<td>Shared Taxi</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐</td>
</tr>
<tr>
<td>Taxi-Bus</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐</td>
</tr>
<tr>
<td>Feeder service to rail, ferry or BRT</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐</td>
</tr>
</tbody>
</table>

Legend:

- Very low performance
- Low performance
- Average performance
- High performance
- Very high performance

Assessing the range of quality of specification designed for shared mobility services. New services may emerge in this spectrum (e.g. peer to peer ridesharing).
How to assess it?
Modelling Framework

Characterisation of the study area
- Transport infrastructure and services
 - Road network
 - PT GTFS model
- Spatial definition and resolution
 - Study area boundaries
 - Grid system definition

Mobility seed and transport mode preferences
- Travel survey
- Mode choice model

Probability of trip production / attraction
- Land use data (Grid)
 - Population
 - Employment
 - Amenities (POIs)
 - Building footprint

Transport performance by OD pair and mode
- Travel times by mode

Synthetic mobility dataset
- Household characterisation
 - Residential location, family profile
- Individual data
 - Age, education level
- Mobility data
 - Trip sequence, each trip (origin, destination, schedule, purpose, transport mode)

Transport demand & supply scenarios
- Demand (Scenario specification)
 - Private car trips (% modal shift to SM)
 - Bus trips (% modal shift to SM)
- Supply (Scenario specification)
 - Private car (allowed: Yes/No)
 - Bus (preserved: Yes/No)
 - BRT (preserved: Yes/No)
 - Walking & biking (preserved: Yes)
 - Rail and Ferry (preserved: Yes)
 - Low Emission Zone (active: Yes/No)

Focus group and stated preference analysis
- Willingness to shift to SM
 - SM mode selection
 - Shared-Taxi, Taxi-Bus
 - Feeder service to rail, ferry or BRT

Simulation (Outputs)
- Service quality
 - Waiting time
 - Detour time
- Operational Performance
 - Average vehicle occupancy
 - Fleet requirements
 - Costs
- Society (Sustainability)
 - Emissions
 - Congestion
 - Accessibility indicators
 - Parking requirements

Spatial definition and resolution
- Study area boundaries
 - Grid system definition
Agent-based Simulation framework

- Dispatcher
- Clients
- Vehicles
Current mobility

Modes shares
Transport supply characterisation
Land use patterns
\(\text{CO}_2 \) intensity per inhabitant
Mode shares

(Auckland)

(Dublin)

(Helsinki)

(Lisbon)
<table>
<thead>
<tr>
<th></th>
<th>Auckland</th>
<th>Dublin</th>
<th>Helsinki</th>
<th>Lisboa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy PT infrastructure</td>
<td>0.10</td>
<td>0.07</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>(km per 1 000 inhabitants)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service provision</td>
<td>3.7</td>
<td>4.9</td>
<td>16.2</td>
<td>6.7</td>
</tr>
<tr>
<td>(seat-km heavy PT per 1 million inhabitants)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity PT</td>
<td>8.0</td>
<td>6.7</td>
<td>16.1</td>
<td>7.9</td>
</tr>
<tr>
<td>(avg. linear speed > 1 km with 10 min penalty in transfer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT/PC travel time ratio</td>
<td>2.8</td>
<td>2.7</td>
<td>1.0</td>
<td>3.1</td>
</tr>
<tr>
<td>(avg., travel time ratio trips > 1km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Auckland)</td>
<td>(Dublin)</td>
<td>(Helsinki)</td>
<td>(Lisboa)</td>
</tr>
<tr>
<td>Study area size</td>
<td>2 233 / 986</td>
<td>6 988 / 1047</td>
<td>770 / 639</td>
<td>3 015 / 999</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(total / active surface sqkm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population density</th>
<th>582 / 1 318</th>
<th>258 / 1 720</th>
<th>1 414 / 1 703</th>
<th>929 / 2 802</th>
</tr>
</thead>
<tbody>
<tr>
<td>(inhabitants per sqkm – total/active surface)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land use mixture</th>
<th>0.32</th>
<th>0.36</th>
<th>0.29</th>
<th>0.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Average Land use Entropy Index)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CBD influence radius</th>
<th>17.5</th>
<th>16.8*</th>
<th>20.6</th>
<th>8.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Distance to reach 3 x inhabitants as CBD employees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Proxy data

(Auckland) (Dublin) (Helsinki) (Lisboa)
<table>
<thead>
<tr>
<th>City</th>
<th>CO2 Intensity (kg of CO\textsubscript{2} per inhabitant, day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auckland</td>
<td>6.0</td>
</tr>
<tr>
<td>Dublin</td>
<td>3.1</td>
</tr>
<tr>
<td>Helsinki</td>
<td>2.5</td>
</tr>
<tr>
<td>Lisboa</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Urban policy testing

Impacts Full adoption scenario
Factors affecting outcome
Testing targeted policies
Transition
Impacts (Full adoption scenario)

(Auckland) (Dublin) (Helsinki) (Lisboa)

Mode shares

- Walk
- Bicycle
- Bus + BRT
- Tram + LRT
- Metro
- Rail
- Ferry
- Shared Taxi
- Taxi-Bus
- Feeder Services
Impacts (Full adoption scenario)

-54% -31% -34% -62%

(Auckland) (Dublin) (Helsinki) (Lisboa)

CO₂ emissions
Impacts (Full adoption scenario)

-93% -97% -96% -96%

(Auckland) (Dublin) (Helsinki) (Lisboa)

Motorised Fleet size
eliminate all street parking
Impacts (Full adoption scenario)

+681% +54% +30% +47%

(Auckland) (Dublin) (Helsinki) (Lisboa)

Heavy PT ridership
Impacts (Full adoption scenario)

+254% +183% +111% +589%

(Auckland) (Dublin) (Helsinki) (Lisboa)

PT + SM accessibility
Impacts (Full adoption scenario)

-36% (-12%) (Auckland)
-10% (+69%) (Dublin)
-15% (+43%) (Helsinki)
-9% (+37%) (Lisboa)

Avg. mobility costs (retaining the car)
Impacts (Full adoption scenario)

2.7 (Auckland) 2.1 (Dublin) 1.8 (Helsinki) 1.6 (Lisboa)

CO2 /inhabitant

kg of CO₂ per inhabitant, day
Factors affecting outcome

Current modal share
Public transport quality
Density of the area
Trip patterns
Testing targeted policies

Car users adoption rates

- In all cities the different car adoption rates were tested: 20%, 50% and 100%

(Auckland)
- Strong decrease of CO₂ from early adoption rates giving the strong car usage and low occupancy rate
- Congestion reduction elasticity around 0.85, showing a great potential congestion reduction

(Dublin)
- Huge efficiency of the measure for CO₂ reduction up to 20%, not being that effective between 20% and 50%
- Congestion reduction elasticity around 0.92, showing a great potential congestion reduction

(Helsinki)
- More limited impacts for lower levels of adoption. Saving start being more significant close to 50% adoption
- Congestion reduction elasticity around 0.45, showing a medium potential congestion reduction
Testing targeted policies

Car users adoption rates (Dublin example)

(Baseline) (20%) (100%)
Testing targeted policies

Interaction with current bus operation

(Auckland) (Dublin) (Helsinki)
Testing targeted policies

Interaction with current bus operation

(Auckland)
- BRT corridors preservation demonstrated better performance
- Low frequency services showed worse performance than SM
- Services should be adapted and flexibilising
- Cost provision reduction and greater connectivity and access

(Dublin)
- Core bus network and new BRT corridors seem to be well fitted to current demand (recent design) and perform better than flexible low capacity SM services
- SM outperforms other bus services specially regional services in the wider GDA
- Cost provision reduction and greater connectivity and access

(Helsinki)
- Tested replacement of bus feeder services to Heavy PT or low frequency services
- Both approached of update these services provided now by SM give very positive outcomes, specially replacing feeder services
- Keep the other services or adapt
- Cost provision reduction and greater connectivity and access
Testing targeted policies

Car use restrictions (Low Emission Zones)

(Auckland) (Dublin) (Helsinki)
Testing targeted policies

Car use restrictions (Low Emission Zones)

(Auckland)
- Spatially narrow LEZ with small interaction with Heavy PT may led to greater congestion near the LEZ parking lots
- Peak period focus can almost achieve similar CO2 performance as the whole day restrictions
- Feeding SM services outside Limited cost efficiency

(Dublin)
- Both tested LEZ systems where successful, yet again the narrow configuration has local congestion effects
- Traffic inside the LEZ is strongly reduced
- Services outside key in reducing the congestion at transfer points between car and SM / PT

(Helsinki)
- Significant reduction in congestion in tested scenario, showing comparable results with higher degrees of SM adoption in the whole study area
- Good integration with PT system allows reducing the local congestion effects
- Very efficient SM system (mainly Taxi-Buses)
Testing targeted policies

Electrification

(Auckland)
- Reduce significantly costs
 1. The increase in fleet due to requirements of range and charging time are largely compensated by reduction on energy costs
 2. These savings became negligible if small market size and may even increase costs

(Dublin)
- Small reduction in costs
 1. The nature of a regional shared mobility services with greater distances leads to cars range be very frequently activated as a constraint, requirement significantly larger fleets for operation
 2. This problem intensifies for small adoption rates

(Helsinki)
- Reduce significantly costs
 1. Large potential due to small required fleet increases with rare range constraint activation
 2. These savings became less significant in smaller fleets to recoup the additional investment costs
Testing targeted policies

Self-driving technology

- The model estimates for self-driving operation result in reductions of approximately 50% on the prices for Shared Taxi and Taxi-Buses per kilometre. This reduction would lead to Shared Taxis being cheaper than current public transport in some cases.

- The estimated values are aligned with recent studies that assessed the cost of shared self-driving vehicles.

Testing targeted policies

Market structure of SM provision

- 15% CO₂ savings with several dispatchers and non-integrated operators
Transition
Land use policies
Economic instruments
Infrastructure/service measures
Regulatory policies
Recommendations

Enable shared mobility as part of policy package

Introduce at a sufficient scale

Feed to mass transit

Target potential early adopters particularly car users

Ensure line and station capacity
Next reports

1. Shared Mobility Simulations for Dublin
2. Shared Mobility Simulations for Lyon
3. Shared Mobility Simulations Methodology
Thank you!

Luis.MARTINEZ@itf-oecd.org
Francisco.FURTADO@itf-oecd.org
Olga.PETRIK@itf-oecd.org
Jari.KAUPPILA@itf-oecd.org

Latest reports available at
https://www.itf-oecd.org/itf-work-shared-mobility