Automated, Connected, Electrified and Shared (ACES) Transportation Modeling and Analysis at NREL

Jeff Gonder, Group Manager
Mobility, Behavior and Advanced Powertrains
NREL Transportation & Hydrogen Systems Center

June 2018
NREL is Part of the US DOE’s National Lab System

National Renewable Energy Laboratory is operated for the U.S. Department of Energy by the Alliance for Sustainable Energy, LLC
Scope of NREL Mission

Sustainable Transportation
- Vehicle & Mobility Technologies
- Electrification
- Hydrogen
- Biofuels

Energy Productivity
- Residential Buildings
- Commercial Buildings
- Manufacturing

Renewable Electricity
- Solar
- Wind
- Water: Marine Hydrokinetics
- Geothermal

Systems Integration
- Grid Integration of Clean Energy
- Distributed Energy Systems
- Batteries and Thermal Storage
- Energy Analysis

Partners
- Private Industry
- Federal Agencies
- State/Local Government
- International
ENERGY EFFICIENT MOBILITY SYSTEMS PROGRAM INVESTIGATES

MOBILITY ENERGY PRODUCTIVITY

THROUGH FIVE EEMS ACTIVITY AREAS

Advanced R&D Projects

Living Labs

Smart Mobility Lab Consortium

Core Evaluation & Simulation Tools

HPC4Mobility & Big Transportation Data Analytics
CONSORTIUM
SMART MOBILITY LAB
7 labs, 30+ projects, 65 researchers, $34M* over 3 years.

Connected & Automated Vehicles
Advanced Fueling Infrastructure
Urban Science
Mobility Decision Science
Multi-Modal Transport

*Based on anticipated funding
CAV Energy Impacts: “Bookending” Analyses

• Potential connected and automated vehicle (CAV) features could have dramatic energy impacts

Wide Range of National-Level CAVs Impacts Scenarios

- Partial automation: +/- 10%-15%
- Full automation: -60% / +200%
- Ride-sharing: Reduction of up to 12%

(No fuel switching or electrification included)

Upper Bound Scenario Details

Effect on Baseline Energy Usage (%)

- Demand
 - Base
 - Hunt for Parking
 - Easier travel
 - Underserved
 - Mode Shift
 - Ridesharing
 - Empty Miles

- Efficiency
 - Drive Smoothing
 - Faster Travel
 - Intersection V2I
 - Collision Avoid
 - Platooning
 - Vehicle Resizing
Lower Bound Scenario Details
Bottom-Up Approach to Explore Nuanced Scenarios

Fuel Consumption Rates

- Drive Profile Characteristics
- Road Type Correlation
- Thermal Impacts
- Grade Impacts

Vehicle Miles Traveled (VMT) Volumes

- Consider the relative proportion of national VMT represented by each driving situation

- Aggregate weighted results for national-level impact, making A/B comparisons for fuel use with or without a given technology active

Quantify different CAV feature fuel economy impacts in different driving situations
Objectives for Bottom-Up Approach

- Same philosophy as calculation architecture for EPA MOVES
- Desired framework attributes for CAVs analysis application
 - **Customizable**: able to represent today’s baseline and future scenarios with different powertrain and CAV technology mixes (for which both the FCR and VMT matrices may change)
 - **Flexible**: able to receive inputs from the variety of different tasks across SMART (including both models and data)
 - **Tractable**: model/data inputs in the format desired for national-level calculations can be obtained
 - ** Appropriately sensitive**: desire FCR and VMT disaggregation in dimensions where variation expected between the examined scenarios
 - **Defensible**: demonstrate that roll up approach applied at different geographic scales shows consistency with test data and detailed modeling
Initial testing to confirm customizability, flexibility, tractability, sensitivity and defensibility

- Example for fuel consumption matrix determination—can populate from different sources and examine different constructs (provided corresponding VMT disaggregation is possible*):

 Distribution of fuel consumption for each speed & road type bin based on a large set of real world drive cycles from the TSDC simulated in FASTSim.

 Fit normal distribution (best fit after statistical testing) of fuel consumption rate for each bin.

 Representative conventional vehicle fuel economy (mean of distribution per speed bin, in gallons per 100 miles)

 Same process with other vehicle types; adjust over time based on macro scenario trends

TSDC = Transportation Secure Data Center; FASTSim = Future Automotive Systems Technology Simulator
Exercising the framework through hypothetical examples

- While awaiting refined outputs from on-going work in other SMART Mobility tasks, applied preliminary/placeholder inputs to the analysis framework, including from:
 - The Multi-Lab CAVs analysis report (Stephens, et al., 2016)
 - The LBNL-led CAVs concepts paper
 - Federal Highway Administration travel data
 - Potential future powertrain penetration scenarios
 - Educated guesses/placeholder values

Illustrative example for CACC penetration in a fleet that remains dominated by conventional vehicles

Sanity check comparison against 2017 Annual Energy Outlook (with different methodology & some assumption differences) shows same ballpark national-level baseline result
Automotive Deployment Options Projection Tool (ADOPT)

Emissions

Policy

Sales/Stock

Energy

Validation

MSRP Equivalent Values

Characteristic

Consumer Preferences

All Existing Options

Evolution

Market Driven

Future Options

Technical Targets

VTO’s Highest Externally Scored Choice Model (AMR*)

EV Charging Infrastructure Analyses
From City- to National-Level; Applying EVI-Pro Tool

- 12 months INRIX GPS data
 - All trips intersecting Columbus region in 2016
 - 33M trips
 - 2.6B waypoints

- Travel-data-informed infrastructure placement
- Comparison with existing /candidate infrastructure locations
Mobility as a Service/TNC Energy Analysis

Transportation Network Companies (TNCs)

TOPIC

- **Vehicle Fleets**
 - Do TNC drivers use more fuel efficient/electric vehicles?
 - Is there an oversupply of vehicles?

- **Deadheading**
 - Deadheading percent of TNCs miles
 - Deadheading variation per driver strategy
 - Deadheading variation per location

Consumer (Passenger)

- **Mobility Behavior Changes**
 - Vehicle ownership
 - Sharing: Vehicle occupancy and pooling
 - Mode replacement and modality style changes
 - Induced travel
 - Location

City

- **Infrastructure**
 - Parking, density, multi-modal infrastructure

Potential Energy Impacts

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>SUB-TOPIC/RESEARCH QUESTIONS</th>
<th>POTENTIAL ENERGY IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier</td>
<td>Do TNC drivers use more fuel efficient/electric vehicles?</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Is there an oversupply of vehicles?</td>
<td>-</td>
</tr>
<tr>
<td>Deadheading</td>
<td>Deadheading percent of TNCs miles</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Deadheading variation per driver strategy</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Deadheading variation per location</td>
<td>-</td>
</tr>
<tr>
<td>Consumer</td>
<td>Vehicle ownership</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sharing: Vehicle occupancy and pooling</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mode replacement and modality style changes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Induced travel</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>-</td>
</tr>
<tr>
<td>City</td>
<td>Parking, density, multi-modal infrastructure</td>
<td>+</td>
</tr>
</tbody>
</table>
Heatmap of trip destinations

Airport is the single largest destination (and origin)

RideAustin data numbers
- Sample duration: 10 months
- Period: June 2016 to April 2017
- 4,961 unique drivers & vehicles
- 261,000 unique riders
- 1.5 million trips

TNC Driving Miles Distribution
- Commuting: 18%
- Passenger Miles: 51%
- Cruising + Over-heading: 31%
TNCs at Airports

TNC use and impacts:
- Data from public information request
- Air travel passengers have been rising
- TNC mode share estimates
- Change in ground transport revenues
- Mode shift: TNC, parking, car rental
Quantify Mobility Benefits Relative to Energy Costs

• A first-of-its-kind, high-resolution, comprehensive accessibility metric that considers energy dependency.

• The Mobility Energy Productivity (MEP) Metric measures the fundamental quality of transportation networks to connect people with goods, services, and employment that define a high-quality of life.

• Beta testing carried out for Columbus, OH. Efforts underway to extend to other cities.

• Current research efforts focus on developing an easily adaptable methodology that various SMART Mobility research tasks can utilize to quantify the impact of technologies or strategies on the MEP of a region.
Questions?

For more information:
Jeff Gonder
National Renewable Energy Laboratory
Jeff.Gonder@nrel.gov
phone: 303.275.4462

NREL Transportation Research Website:
www.nrel.gov/transportation

www.nrel.gov
Appendix
Initial testing to confirm customizability, flexibility, tractability, sensitivity and defensibility

- Example for fuel consumption matrix determination—can populate from different sources and examine different constructs (provided corresponding VMT disaggregation is possible*):

Distribution of fuel consumption for each speed & road type bin based on a large set of real world drive cycles from the TSDC simulated in FASTSim.

<table>
<thead>
<tr>
<th>Avg Speed mph</th>
<th>freeways & highways</th>
<th>connectors & arterials</th>
<th>local roads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>[0-5]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5-10]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10-15)</td>
<td>7.63</td>
<td>8.21</td>
<td>6.87</td>
</tr>
<tr>
<td>(15-20)</td>
<td>7.34</td>
<td>7.64</td>
<td>6.39</td>
</tr>
<tr>
<td>(20-25)</td>
<td>6.55</td>
<td>6.71</td>
<td>5.85</td>
</tr>
<tr>
<td>(25-30)</td>
<td>5.77</td>
<td>5.86</td>
<td>5.22</td>
</tr>
<tr>
<td>(30-35)</td>
<td>4.74</td>
<td>4.4</td>
<td>4.98</td>
</tr>
<tr>
<td>(35-40)</td>
<td>4.26</td>
<td>4.26</td>
<td>4.42</td>
</tr>
<tr>
<td>(40-45)</td>
<td>4.27</td>
<td>4.16</td>
<td>4.06</td>
</tr>
<tr>
<td>(45-50)</td>
<td>3.86</td>
<td>3.91</td>
<td>3.61</td>
</tr>
<tr>
<td>(50-55)</td>
<td>3.34</td>
<td>3.69</td>
<td>3.66</td>
</tr>
<tr>
<td>(55-60)</td>
<td>3.08</td>
<td>3.5</td>
<td>3.49</td>
</tr>
<tr>
<td>(60-65)</td>
<td>3.16</td>
<td>3.44</td>
<td>3.44</td>
</tr>
<tr>
<td>(65-70)</td>
<td>3.33</td>
<td>3.52</td>
<td>3.49</td>
</tr>
<tr>
<td>(70-75)</td>
<td>3.49</td>
<td>3.65</td>
<td>3.53</td>
</tr>
<tr>
<td>>80</td>
<td>3.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TSDC = Transportation Secure Data Center; FASTSim = Future Automotive Systems Technology Simulator
Initial testing to confirm customizability, flexibility, tractability, sensitivity and defensibility

- Confirm tractability by ensuring FCR and VMT disaggregation can align; e.g.:

Conflation of typical daily VMT from the Highway Performance Monitoring System (HPMS) with typical daily speed profiles from TomTom data

Total VMT (in millions) distributed by road category, environment, and average driving speeds at the time of travel (considered indicative of congestion level)

Total annual VMT of LDVs:

2.47 trillion

(based on aggregate HPMS dataset)

<table>
<thead>
<tr>
<th>Avg Speed Bins (mph)</th>
<th>Freeways & Highways</th>
<th>Connectors & Arterials</th>
<th>Local Roads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>[0-5]</td>
<td>0.000</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>(5-10]</td>
<td>0.006</td>
<td>0.046</td>
<td>0.148</td>
</tr>
<tr>
<td>(10-15]</td>
<td>0.019</td>
<td>0.172</td>
<td>1.267</td>
</tr>
<tr>
<td>(15-20]</td>
<td>0.040</td>
<td>0.375</td>
<td>3.553</td>
</tr>
<tr>
<td>(20-25]</td>
<td>0.092</td>
<td>0.679</td>
<td>7.287</td>
</tr>
<tr>
<td>(25-30]</td>
<td>0.183</td>
<td>1.466</td>
<td>13.926</td>
</tr>
<tr>
<td>(35-40]</td>
<td>0.466</td>
<td>5.173</td>
<td>36.814</td>
</tr>
<tr>
<td>(40-45]</td>
<td>0.668</td>
<td>11.947</td>
<td>45.680</td>
</tr>
<tr>
<td>(45-50]</td>
<td>0.951</td>
<td>24.784</td>
<td>58.591</td>
</tr>
<tr>
<td>(50-55]</td>
<td>1.863</td>
<td>52.048</td>
<td>95.089</td>
</tr>
<tr>
<td>(55-60]</td>
<td>4.956</td>
<td>114.023</td>
<td>16.907</td>
</tr>
<tr>
<td>(60-65]</td>
<td>16.907</td>
<td>207.692</td>
<td>67.158</td>
</tr>
<tr>
<td>(65-70]</td>
<td>62.286</td>
<td>186.095</td>
<td>62.429</td>
</tr>
<tr>
<td>(70-75]</td>
<td>95.927</td>
<td>42.591</td>
<td>8.523</td>
</tr>
<tr>
<td>(75-80]</td>
<td>4.802</td>
<td>0.328</td>
<td>0.002</td>
</tr>
<tr>
<td>>80</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Total (from HPMS)</td>
<td>189.50</td>
<td>650.58</td>
<td>453.99</td>
</tr>
</tbody>
</table>
On-Road Data Analysis: Evaluating Automation Impacts on Vehicle Operation and Fuel Consumption

- Volvo Car Corp (VCC) provided NREL access to a large set of on-road vehicle operating data in adaptive cruise control (ACC) and manually driven (non-ACC) modes
- Developed methodology to assess ACC (partial automation) impacts, with intent to repeat on higher-level vehicle automation under Drive Me
- From the data NREL derived ≈17K segments (≤0.5 km in length) of ACC operation and ≈61K segments of non-ACC operation over the test route designated for Drive Me
- ACC segments showed (statistically significant) smoother overall driving
- Also examined ACC vs. non-ACC fuel consumption differences—found to vary with traffic speed and road grade.

Segments of contiguous ACC operation on the Drive Me test route

Non-ACC segments’ acceleration standard deviation is significantly higher than for ACC segments
Potential next steps:

- Publish findings for partial automation (ACC) impacts
- Apply methodology to automated vehicle pilot under Drive Me
 - Data from customers using PHEV Volvo XC90s with higher-level automation
Applying Methodology to Quantify Real-World Benefit of Advanced Vehicle Climate Control Technology*

Approach

- NREL collaborated with ANL, Toyota, and Denso to test and model an HVAC technology
- An enhanced version of FASTSim was validated against ANL test data and simulated over representative real world driving conditions
- Over 200,000 trips from the Transportation Secure Data Center (TSDC) hosted by NREL revealed the conditions under which the technology provided the most benefit

Significance & Impact

- NREL analysis revealed a real-world benefit of 0.18% per vehicle
 - Significant when deployed across Toyota’s vehicle line
 - Toyota engineers to apply for off-cycle credit with EPA, present findings to internal Toyota Technical Congress
- Currently pursuing an additional off-cycle analysis projects

* Published at 2018 SAE WCX
Green Routing Analysis

Preliminary Opportunity Assessment

• Applied a basic energy estimation model together with actual TSDC travel data and a routing API (i.e. Google Directions API)
• Assessed high-level opportunity for fuel savings from green routing
• Showed that 31% of all trips potentially have a less fuel consuming alternative
• For the dataset and estimation model used in this analysis, taking the “greener” route would have reduced fuel use by 12% (in that 31% subset of trips)
• Also found that 2/3 of the potential fuel savings come from routes that reduce both time and energy use

Green Routing Methodology Refinement & Validation

Energy Estimation Model Refinement & Validation

- INL collected data with multiple former AVTA vehicles over alternate routes
- NREL customized energy estimation model—sensitive to anticipated segment speeds, grades and turns
 - Trained by large-scale simulation of validated FASTSim model over TSDC drive cycles, then applied pre-trip
- Showed conventional vehicle energy estimation model correctly identified the greener route in all of the on-road tests
Illustrative Analysis Framework Results with Placeholder Inputs

Future work:

- Apply refined inputs from other SMART tasks
 - Explore sensitivities of the outputs
- Add/refine vehicle and CAV technology scenarios considered

Cost comparisons based on AEO 2017 projections

2050 noCAVs - High:
- Gas Consumption: 6.3B gal, $40B
- Electricity Consumption: 0.2B kWh, $0.1B

2050 noCAVs - High:
- Gas Consumption: 2.9B gal, $19B
- Electricity Consumption: 2.8B kWh, $0.7B
ARPA-E TRANSNET: The Connected Traveler

Smart phone mobility app to encourage shifts in travel behavior toward energy efficient choices through incentives and improved convenience for the user

Improve existing transportation network and reduce energy use
- Travel time, mode choice, routing options

Mobility app leverages incentives to shift behavior
- Personalized via revealed choice data, user preferences
- Micro surveys build persona profiles of users
“Info-Rich Vehicle Dynamics and Powertrain Controls”

• Eco-Approach
 o Maximize the kinetic energy recovery through the use of preview information by coordinating vehicle speed control and various powertrain fuel-saving features (DFCO, AFM, gear selection, stop/start, etc.)

• Eco-Departure
 o Optimize vehicle departing acceleration profile and powertrain control calibration to maximize efficiency

• Eco-Cruise
 o Optimize powertrain operation to maximize efficiency based on look-ahead road grade and traffic conditions

• Eco-Routing
 o Select route that minimizes fuel consumption based on vehicle-specific powertrain characteristics without compromising travel time

GM = General Motors; CMU = Carnegie Mellon University
DFCO = deceleration fuel cut off; AFM = active fuel management
Other CAV Projects

• Modeling CAVs Transition Dynamics and Identifying Tipping Points
 o Identify and quantify circumstances/dynamics of potential transitions
 o System dynamics model-based examination of barriers, points of leverage, “tipping points” and “lock-in” for large-scale deployment of CAV technologies and Mobility as a Service

• Truck Platooning
 o Testing to measure interaction with aero changes and control enhancements
 o Truck activity data analysis to evaluate platooning opportunity space
Automated Mobility Districts

Concept

• A new paradigm in which a **fleet of automated vehicles** displaces private automobiles for day-to-day travel is increasingly gaining attention and interest.

• Seeded by **preliminary exploration** of energy consequences using results from previous automated transit studies (**4-14% reduction** in fuel consumption).

• Developing an AMD modeling and **simulation toolkit** capable of quantifying the **energy and mobility benefits of AMDs**.

• The toolkit is based on **SUMO**- an open source traffic simulation package and integrates with **FASTSim**, a vehicle powertrain systems analysis tool developed at NREL.

• Collaborating with **real world AMD deployments** to obtain data (Greenville; Miramar etc.,)

Significance & Impact

• A generalized, open-source, and easy to use modeling toolkit to asses the energy and travel impacts of AMDs

• The toolkit will provide planning level models to estimate energy and mobility impacts across a number of different deployment scenarios.
TNC Availability and Vehicle Registrations

Research Question: What is the impact of TNCs on vehicle ownership?
Regression analysis using a difference-in-difference (DiD) econometric model with vehicle registration (Polk) data, TNC-entry dates, and control variables

\[y_{st} = \beta' x_{st} + \alpha' z_{st} + \gamma_s + \delta_t + \varepsilon_{st} \]

- \(y_{st} \): dependent variables (vehicle registration per over-16-years-old population) for urban area \(s \) and year \(t \)
- \(x_{st} \): treatment effects (i.e., TNC entry date)
- \(z_{st} \): controls (population density, income, children, etc.)
- \(\gamma_s \): fixed effect for urban area \(s \)
- \(\delta_t \): fixed effect for year \(t \)
- \(\varepsilon_{st} \): unobserved error

Preliminary Results (212 urban Areas in the U.S.)
- Vehicle registrations, overall, do not change with TNC-availability
- Using an interaction for unemployment and TNC, the effect on unemployment changes; suggesting a possible decrease in vehicle registrations for general public, and increase for drivers
- Average “Vehicle Model Year” increase with TNC-availability; suggesting people are thinking twice before renewing a car
Transportation Secure Data Center (TSDC) – Value from detailed data, with privacy protections

• High-resolution travel data (GPS points, trip ends)
• Cleansed/public download data
 – Streamlined access for cleansed data; helps limit accounts in secure portal to those with a legitimate need to work with the detailed data
 – Excludes latitude/longitude and other potentially identifying details (e.g., vehicle model)
 – Includes useful supplemental information (e.g., disaggregated travel distances)
 – Requires point-and-click user registration and usage agreement

• Secure portal for detailed/spatial data
 – Applicant & supervisor sign legal agreement
 – Analysis description form
 – Advisory group review
 – Virtual access (rather than requiring travel)
 o Data transfer prohibited
 o Use provided software
 o Aggregated results audited
Vehicle Modeling in FASTSim

- **FASTSim’s balance of accuracy vs. complexity**
 - Model captures most important factors influencing vehicle fuel economy, performance and cost

- **Well validated and widely accepted**
 - Simplest version with generic components gives good large-scale agreement
 - Complexity can be added to capture range of real-world considerations
Real-World Fuel Economy Modeling

Example results for a conventional Ford Fusion:

Capturing wide On-road Fuel Economy Variation

Actual trip mpg can vary +/-50% from average

Error bars represent simulation with 5 mph head/tail wind

Model Error
+10%
+5%
-5%
-10%

Dyno Results (for reference)

2.4% RMSE

5.6% RMSE

Face Color = AC Usage
AC On, AC Off

Edge Color = Start Temp
Cold Start, Hot Start

Shape = Road Grade
Up arrow = Climb
Down arrow = Descent
Circle = Flat

Face Color = Ambient Temp
-17°C, -7°C, +22°C, +35°C

Shape = Drive Cycle
Square = UDDS, Diamond = US06

Real-World Fuel Economy Modeling

2.4% RMSE

Determination of fuel economy under simulated conditions

Capturing wide on-road fuel economy variation

Actual trip mpg can vary +/-50% from average

Error bars represent simulation with 5 mph head/tail wind

Model Error
+10%
+5%
-5%
-10%

Dyno Results (for reference)

Face Color = Ambient Temp
-17°C, -7°C, +22°C, +35°C

Shape = Drive Cycle
Square = UDDS, Diamond = US06

2.4% RMSE

5.6% RMSE

Actual trip mpg can vary +/-50% from average

Error bars represent simulation with 5 mph head/tail wind

Model Error
+10%
+5%
-5%
-10%

Dyno Results (for reference)

Face Color = Ambient Temp
-17°C, -7°C, +22°C, +35°C

Shape = Drive Cycle
Square = UDDS, Diamond = US06

2.4% RMSE