Energy Storage Technologies
Battery Storage for Grid Stabilization

IEA EGRD Conference on Energy Storage
BMWi, Berlin, October 23rd 2014

Dr. Matthias Leuthold
batteries@isea.rwth-aachen.de
RWTH Aachen
Institute for Power Generation & Storage Systems (PGS)
Electrochemical Energy Conversion and Storage Systems (ISEA)
Who we are

- RWTH Aachen University
 - Major technical university in Germany, >30,000 students
 - Electrical Power Engineering: 5 institutes / 6 professors, >250 PhD candidates
 - Biggest research cluster on electrical energy technology in Germany

- Storage @ Aachen University
 - Electrical Engineering: from cell - to system - to application - to techno-economics
Chair for Electrical storage systems

<table>
<thead>
<tr>
<th>Role</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td>1</td>
</tr>
<tr>
<td>Senior scientists / heads of section</td>
<td>3</td>
</tr>
<tr>
<td>Scientist and engineers</td>
<td>65</td>
</tr>
<tr>
<td>Research fellows</td>
<td>5</td>
</tr>
<tr>
<td>Students (full and part time)</td>
<td>60+</td>
</tr>
</tbody>
</table>

Electrical storage systems

- Lead Acid, Li-Ion, NiMH, NiCd, SuperCaps, Fuel Cells, Redox-Flow and others ...
- Energy- und Battery Management Systems
- Thermal and electrical modelling
- Battery pack design
- Characterization and durability tests
- System integration renewable energy
- Hybrid, plug-in und electric vehicles
- Vehicle power net
- Micro grids / Autonomous power systems
- Uninterruptible power supply (UPS)
Electricity price / PV-cost opens window for storage
- Depends on cost of generation, electricity and storage (and regulation!)
- Sizing + energy management determine viability
Massive decay of prices for lithium-ion-cells

Electric mobility dominates development (> ten-fold market size of stationary)

Drives also stationary storage system costs down (in part)
Motivation 3
Renewables: Where do we need storage?

50 Hertz Transmission (Februar 2008)

Prognosis uncertainty
System stability

Flexible convention. generation !
(up to 60% FRE)

Load Wind generation (real)
Wind generation (prognosis)
Storage Applications

Source: IfR / TU Braunschweig

Pumped Hydro Capacity in Germany
40 GWh, 5GW

23.10.2014 | M. Leuthold - Storage Technologies - EGRD Berlin | 6
Motivation 4
Batteries in Electric Vehicles

Total power rating and storage capacity
2020: 1 million EV = 3 GW / 10-20 GWh
Selected Projects

- WMEP
 - Scientific Monitoring and Evaluation Program of the Market Incentive Program for PV-Storage Systems

- GENESYS
 - Genetic Optimization of the European Energy System

- Battery Storage for Grid Stabilization
 - M5Bat: Modular Multi-Megawatt Multi-Technology Medium Voltage Battery
Goal: Determination of the cost optimal European Energy System with 100% Renewable Energy

- Optimization for minimal cost
- Simulation of 100% renewables for entire Europe, 7 years of data, 1h resolution
- Estimate of required capacities of generators (PV and wind) different storage types and grid
- Simplified model for fast analysis of multiple years of data. General picture plus sensitivities. 30 regions plus interconnections
GENESYS Result 1: Genetic Optimization of the European Energy Systems

- **Long Term Storage** 802,000 GWh
 - Technology: Power to Gas
 - Charge/Discharge: 880 / 540 GW
 - Energy/Power Ratio: Ø1270 h

- **Medium Term Storage** 2,730 GWh
 - Technology: Pumped hydro
 - Charge/Discharge: 190 GW
 - Energy/Power Ratio: Ø 15 h

- **Short Term Storage** 1,550 GWh
 - Technology: Battery Storage
 - Charge/Discharge: 320 GW
 - Energy/Power Ratio: Ø 6 h

Total Discharge Power ~ Peak Demand
At 100% RE only fixed costs i.e. CAPEX plus maintenance

Cost per kWh dominated by CAPEX of generation capacity (wind and photovoltaics)

Fraction of storage systems about 25% of total system cost

Transmission grid contributing just below 10%
The M5BAT Project

Modular Multi-Megawatt Multi-Technology Medium Voltage Battery
Partners

+ RWTH Aachen University (Project Lead)
 + PGS (Batterie research)
 + EBC (Building monitoring)
 + IAEW (Energy Economics)

+ beta-motion GmbH (Li-Ion Battery)

+ E.ON SE (Building, Marketing)

+ GNB Industrial Power – Exide Technologies (Lead Acid Battery)

+ SMA Solar Technology AG (Inverter)
M5BAT – Projekt Overview

+ Projekt duration: 4 years (07/2013-06/2017)
+ Planing and construction: 2 years
+ Operation: 2 years
+ Total Budget: 12,5 Mio. Euro
+ Funding BMWi: 6,5 Mio. Euro

+ Projekt goals:
 + Construction of a pilot hybrid battery storage system
 + Realistic operation and market participation in several applications
 + E.g. Primary Control Reserve, SRL, MR, Arbitrage, Ramping support …
 + Evaluation of technical and economical results and development of recommendations for design and operation of hybrid battery systems
 + Development of several components for Battery Storage Systems
 + System Control and Monitoring System (Leittechnik, Anlagensteuerung)
 + Optimized design for stationary lead acid batteries
 + Optimized control for inverters
M5BAT – Timeline

- Project duration: 4 years (07/2013 – 06/2017)
 - Planning, permissions, detail planning, tenders
 - Retrofit of existing building
 - Installation of components (batteries, inverter, TGA, electrical system, protection and control system)
 - Operation and evaluation

TGA = Technische Gebäude-Ausrüstung
M5BAT – Technical Data

+ 5 parallel strings (voltage level between 450-820 V DC)
+ Nominal power rating: 5 MW (AC) / overall capacity: 4,2 MWh
+ 2 parallel inverters per string à 630 kVA nominal power
Batterien – Technical Data

+ Each string connected with two inverters (2-4 parallel inverters à 630 kVA)
+ Separate control für each string possible

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Power / Capacity</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-Acid(OCSM)</td>
<td>1,25 MW / 1,48 MWh</td>
<td>GNB Industrial Power (Partner)</td>
</tr>
<tr>
<td>VRLA Lead-Acid(OPzV)</td>
<td>0,85 MW / 0,85 MWh</td>
<td>GNB Industrial Power (Partner)</td>
</tr>
<tr>
<td>Lithium-Ion (NMC)</td>
<td>2,50 MW / 0,77 MWh</td>
<td>beta-motion (Partner)</td>
</tr>
<tr>
<td>Lithium-Ion (LFP, LTO or LMO)</td>
<td>1,25 MW / 0,6 MWh</td>
<td>Tendered</td>
</tr>
<tr>
<td>NaNiCl</td>
<td>0,25 MW / 0,5 MWh</td>
<td>Tendered</td>
</tr>
</tbody>
</table>

Capacity at 1h discharge (C1)
Usable capacity of lead acid batteries is larger at slower discharge
VRLA = Valve Regulated Lead Acid
M5Bat - Goals

Deliverables

+ Handbook for design and operation of MW-Battery Systems in MV-grid
+ Technology comparison, single and combined operation
+ Delivery of multiple services (revenue stacking)
+ Grid planning and operation implications

RWTH Aachen-IAEW und RWTH Aachen-PGS
M5Bat - Impressions
Primary Control Reserve

- Pay as bid auction by TSO: weekly, min bid 1 MW
- Participation requires prequalification
- Activation fully automatic based on grid frequency (static)
- Market volume 570 MW in Germany (100 M€/a), 3.000MW in Europe

Coupled Markets:
- 25 MW CH
- 35 MW NL

Source: www.regelleistung.net
Primary Control Reserve (PCR) – Load Profile
Primary Control Reserve (PCR) – Load Profile

- 72% of the time no load (dead band)
- Activation nearly symmetrical pos. and neg. reserve – not quite
- Maximum demand in 3 months 70% of nominal power rating
 - Activation of > 25% of nominal power in 0.36% of the time → 15.4 hours per year
 - Activation of > 50% of nominal power in 0.0036% of the time → 8.5 minutes per year
Li-Ionen Batteries - Aging

+ Lifetime: superposition of calendaric and cyclic aging
+ To first order
 + Low SOC → longer life / high SOC → shorter life
 + Low delta SOC → longer life / high delta SOC → shorter life.
Primary Control Reserve (PCR) – SOC Profile

+ Operational strategy for compensation of losses necessary (slow and low power)
+ Time share at given SOC depends on size of battery – influence on aging
+ Smaller capacity results in larger variation of SOC i.e. increased aging
+ String influence on invest (capex)
+ Prequalification requires 2 x 15 min full load, ENTSOE pushing towards 2 x 30 min
+ Technically 0.5 MWh/MW sufficient – only prequalification requires 1MWh/MW
M5Bat – Lessons learned so far

+ Safety standards for LIB-systems missing – no reference cases
 ➔ permissions difficult (fire, hazard, explosion, earthquake)
 ➔ safety levels of car industry not applicable
 (e.g. controlled burn down not feasible)
 ➔ explosion of single cell less critical than explosion of aerosols

+ Grid connection fees even though system operated exclusively for grid services: 60 T€ per MW = 6 % of invest

+ Tender very complex - without references no established warranty schemes

+ Time line very slow due to lack of experience at many stakeholders (administration, municipality, fire department, …)

+ No standard for prequalification, back up, penalties
 ➔ individual negotiations with TSO necessary
Questions

- Which energy storage technologies are currently used?
- What is the status of these technologies? Can they be scaled?
- Which primary technological limitations and barriers need to be overcome to make Energy Storage more beneficial to power utilities?
- Which technological research needs to be done?
Which energy storage technologies are currently used?

- Lead-Acid, Lithium-Ion, NaS/NaNiCl, VRFB
- Most dynamic Lithium-Ion
- New Candidates: Metal-air, Lithium-Sulfur, Anodes with Silicon, Sodium-Ion (Aquion), Liquid Air, …
- Requirements: safe, cheap, abundant, cyclic and calendaric stability, energy dense, power dense, non toxic
- Candidates fail at least one requirement, usually more
- Time to market min. 5 years rather 10
- Hard to beat Lithium Ion
- However, different applications have different requirements:
 - e.g. UPS matched best by Lead-Acid
 - E2P > 2-4h NaS/NaNiCl + Flow Batteries
Questions / Answers

- What is the status of these technologies? Can they be scaled?
 ≡ In principle …
Scaling up Battery Storage

- Cells cost 1 MWh: 200 T€ - 250 T€
 (Life time today up to 10 years, in 2020 up to 20 years probably realistic)
- Converter cost 1 MW: 100 T€
- System integration 1 MW: 100 T€ (BMS, BOP etc.)

- Cost target
 - 1 MW / 1 MWh ~ 450 €/kW
 - 1 MW / 2 MWh ~ 750 €/kW
 - 1 MW / 3 MWh ~ 1.050 €/kW
 - 1 MW / 4 MWh ~ 1.300 €/kW

- Construction: anywhere within < 6 months
Scaling up Battery Storage

- Modern container vessels carry 15,000 Containers (ca. 400 m x 56 m, 157 kt)
Scaling up Battery Storage

- Modern container vessels carry 15,000 Containers (ca. 400 m x 56 m, 157 kt)

 - = 15 GWh (all German PHES together have 40 GWh)
Scaling up Battery Storage

- Modern container vessels carry 15,000 Containers (ca. 400 m x 56 m, 157 kt)

 = 15 GWh / 15 GW (all German PHES together have 40 GWh / 5 GWh)
Questions / Answers

What is the status of these technologies? Can they be scaled?

- In principle …but:
- Safety and standardization: automobile ASIL not applicable
- Prequalification: PCR capacity requirement still uncertain
- Interaction of many inverter connected systems to be investigated
 - i.e. how much synchronous generation is required?
- Regulation/legal: grid connection fees, grid charges applicable?
- Operational experience needed (e.g. proof of durability at real conditions)
- As cell prices drop – other components become more cost critical
Cost reduction strongly dependent on market volume
Electric mobility below 500 €/kWh in 2020
Small stationary systems about 3 x fold cost
Grid connected power in GW

- Freq.Reserve
- Electric cars EV/PHEV
- Domestic PV storage

2023:
- Min: 0
- Max: 15

2033:
- Min: 10
- Max: 70

2050:
- Min: 20
- Max: 180

Perspektive Storage Markets
Germany

M. Leuthold - Storage Technologies - EGRD Berlin
23.10.2014
Conclusion

- Electricity storage technologies are available, scaling is technically feasible – the challenge is viability!

- Stationary storage systems at the beginning of commercialization
 - Ancillary Services (PCR, synthetic Inertia, black start, voltage support, …)
 - Domestic PV Storage Systems - plus grid support as secondary use
 - Electric Mobility - during grid connection also grid support

- Major drop in cost of storage (LIB-cells) since 2011 and continue to do so

- Besides research on new chemistries/technologies research on system integration, market introduction and operational experience needed

- Major driver is electric mobility
Energy Storage Technologies
Battery Storage for Grid Stabilization

IEA EGRD Conference on Energy Storage
BMWi, Berlin, October 23rd 2014

Dr. Matthias Leuthold
batteries@isea.rwth-aachen.de
RWTH Aachen
Institute for Power Generation & Storage Systems (PGS)
Electrochemical Energy Conversion and Storage Systems (ISEA)
Storage @ RWTH Aachen

Electrochemical Energy Conversion and Storage Systems
@ Institute for Power Electronics and Electrical Drives (ISEA)
Institute für Power Generation & Storage Systems (PGS)
@ E.ON Energy Research Center

Rheinisch-Westfälische Technische Hochschule RWTH Aachen

Univ.-Prof. Dr. Dirk Uwe Sauer
Storage @ RWTH Aachen

Electrochemical Energy Conversion and Storage Systems
@ Institute for Power Electronics and Electrical Drives (ISEA)

Institute für Power Generation & Storage Systems (PGS)
@ E.ON Energy Research Center

2001 PhD High Energy Physics @ DESY Zeuthen
2004 Ohio State University, Columbus OH
2006 RWTH Aachen, Physics Institute 3A
2008 Siemens AG, Renewable Energy, Wind
2010 ISEA, RWTH Aachen, Head of Section
Grid Integration and Storage System Analysis
Energy systems with high shares of renewables
Battery systems for ancillary services
PV-home storage systems
Electric cars in grids

Dr.rer.nat. Matthias Leuthold
mle@isea.rwth-aachen.de

Rheinisch-Westfälische Technische Hochschule RWTH Aachen