EURELECTRIC
Innovation Action Plan

Utilities: Powerhouses of innovation

‘An Innovation Action Plan for the European Electricity Sector’

Koen Noyens, Advisor, EP&G Unit
Paris, IEA
24 April 2014
The European energy sector has experienced profound change in the last decades

- National/local vertically integrated companies, government owned
- Full national-based regulation

- Unbundling of vertically integrated monopolies
- Beginning of competition in power generation at local level

- Consolidation at European level
- Full competition in generation and retail

- Rush for “green” assets and RES investment bonanza
- Rise of producers - consumers

This change has given rise to some spectacular developments…

SOURCE: McKinsey & Company
Utility executives saw a range of powerful trends acting on the sector in the last decade, with new renewables the single most powerful influence.

Utility executives ranking of trends impacting the power sector in the last decade
% of respondents

- Massive renewable capacity additions: 39 % (Top rank), 24 % (2nd rank)
- Nuclear change of fortunes: 14 % (Top rank), 22 % (2nd rank)
- Move towards more integrated markets: 12 % (Top rank), 10 % (2nd rank)
- Downstream unbundling/intro of competition in retail: 8 % (Top rank), 6 % (2nd rank)
- Demand slowdown: 8 % (Top rank), 10 % (2nd rank)
- Development of decentralised power generation: 6 % (Top rank), 12 % (2nd rank)
- Emergence of smart metering/smart grids: 6 % (Top rank), 2 % (2nd rank)
- Introduction of EU ETS: 4 % (Top rank), 6 % (2nd rank)
- Development of more liquid wholesale markets: 2 % (Top rank), 4 % (2nd rank)
- Commodity price cycles: 2 % (Top rank), 4 % (2nd rank)
- M&A activity: 4 % (Top rank), 4 % (2nd rank)

1 Renewables are now taking a large majority of investment

<table>
<thead>
<tr>
<th>Year</th>
<th>Share of new capacity additions in EU</th>
<th>Share of generation mix in EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional</td>
<td>Renewables</td>
</tr>
<tr>
<td>2000</td>
<td>18%</td>
<td>82%</td>
</tr>
<tr>
<td>2012</td>
<td>31%</td>
<td>69%</td>
</tr>
</tbody>
</table>

The data shows a significant increase in the share of renewable capacity additions and generation mix in the EU from 2000 to 2012.
2. Decentralised generation emerged and is on the rise

Number of bio-villages in Germany

<table>
<thead>
<tr>
<th>Year</th>
<th>Bio-villages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>3</td>
</tr>
<tr>
<td>2003</td>
<td>5</td>
</tr>
<tr>
<td>2004</td>
<td>6</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
</tr>
<tr>
<td>2006</td>
<td>16</td>
</tr>
<tr>
<td>2007</td>
<td>21</td>
</tr>
<tr>
<td>2008</td>
<td>30</td>
</tr>
<tr>
<td>2009</td>
<td>47</td>
</tr>
<tr>
<td>2010</td>
<td>65</td>
</tr>
<tr>
<td>2011</td>
<td>113</td>
</tr>
<tr>
<td>2012</td>
<td>133</td>
</tr>
</tbody>
</table>

Bio-villages cover at least 50% of their power and heat consumption by regionally produced bio energy

CAGR +56%

SOURCE: Ministry of Food, Agriculture, and Consumer Protection, Agency for Renewable Resources, EURELECTRIC IAP Taskforce analysis
The value creation of conventional generation, the core profit pool of the industry, is declining

European EBIT pool, EUR billions, Percentage, 2012 real

1 Includes transmission, conventional distribution, and smart grids
2 Includes distributed generation, EV infrastructure, new downstream products and services
3 Excludes earnings from ancillary services
4 Assuming no change in commodity prices vs. today

SOURCE: McKinsey Power Model, industry vision team analysis
European utilities’ stock market performance has recently deteriorated...

Percent per year

Annualised shareholder return

1 Utilities includes grid companies. Shareholder return shown is total shareholder return, calculated as the change in the share price plus the dividends paid, divided by the initial share price, and calculated on an annual basis.

SOURCE: Datastream; McKinsey Industry Vision
However, growth is nonetheless possible
The good news – growth areas can offset the decline in traditional areas

European industry EBIT, EUR billions

- **Downstream**¹: 114 (18) 6 14 10 28
- **T&D**²: 25
- **RES**: 16
- **Conventional generation**³: 55

2012 Decline in conventional generation Growth in traditional T&D 2020

1 Includes power sales and new downstream (distributed generation and storage, electric vehicle infrastructure, new downstream products and services, power flow optimization)
2 Includes smart grids
3 Assuming no change in commodity prices vs. today

SOURCE: McKinsey Industry vision team analysis
The cost of key renewable technologies is expected to decrease by as much as 60% to 2020.

1 Cost refers to the levelised cost of energy attainable using leading technology in favourable conditions. Assumptions include (2011, 2020): Onshore wind capex in EUR/kW (1188, 1108), load factor (36%, 39%), WACC 9%; Offshore wind capex in EUR/kW (3772, 2830), load factor (51%, 54%), WACC 10%; Solar PV capex in EUR/kW (2162, 927), load factor (16%, 16%), WACC 7%.

SOURCE: McKinsey Clean Technology Performance Initiative
New downstream value pools may emerge from the green agenda and new technologies

- Distributed generation
 - Installation, maintenance, and possibly ownership of:
 - Solar PV systems
 - Mini/micro CHPs

- Battery storage
 - Ownership, installation, and maintenance of battery storage at local distribution level

- Public infrastructure for electric vehicles
 - Grid connection works
 - Ownership, installation, and maintenance of public charging points

- New products and services at customer premises
 - Installation, maintenance, and possibly ownership of products that:
 - Increase customer comfort and enable new services
 - Make home and other buildings more efficient

- Power flow optimisation
 - Leverage local sources of net load flexibility (distributed storage, EV batteries, DSM, DG) to:
 - Optimise power flow at local and system level to manage congestions and stabilise grid
 - Shift net system load to capture price arbitrage opportunities
While storage costs are currently high, they are expected to drop – especially for Li-Ion technologies.

Will flow cells be a game changer with radically low costs?

1. LFP/C Chemistry; based on costs for automotive applications

SOURCE: ESA; McKinsey
Utilities know their future depends on Innovation.
After a slow start, utilities now account for a majority of the pipeline of large-scale RES investment

Utility and non-utility investment in large-scale RES capacity¹
Total GW; share of total capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Non-utilities</th>
<th>Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-04</td>
<td>26</td>
<td>8%</td>
</tr>
<tr>
<td>2005-09</td>
<td>40</td>
<td>13%</td>
</tr>
<tr>
<td>2010-2014²</td>
<td>43</td>
<td>30%</td>
</tr>
<tr>
<td>2015-18³</td>
<td>20</td>
<td>52%</td>
</tr>
</tbody>
</table>

¹ Includes installations of 10 MW or more across solar, biomass, and wind power
² Based on completed projects and pipeline
³ Based on project pipeline

Source: Platts Powervision; EURELECTRIC Innovation Action Plan Taskforce analysis
R&D expenditure by large European utilities has nearly doubled over the last decade to over €1.7 billion

Source: Capital IQ, company annual reports; EURELECTRIC Innovation Action Plan Task Force analysis
Innovation’s calling: three imperatives stand out

- Mastering technology
- Getting closer to customers
- Developing new business models and services
Continued development of a large range of technologies could have disruptive impact on the power sector

Selected examples

- Electric vehicles
- Solar thermal power plants
- Solid-state lighting
- Smart windows
- Advanced building materials
- Grid batteries
- CCS
- Offshore wind
- Small scale nuclear
- Digital power conversion
- Vehicle-to-grid integration
- Compressor-less air conditioning

1. MASTERING TECHNOLOGY

<table>
<thead>
<tr>
<th>Stage/maturity</th>
<th>Market size</th>
<th>Time</th>
</tr>
</thead>
</table>
| Mature | • Wind energy
| | • CFLs | |
| | • Hybrid cars | |
| | • Smart meters | |
| | • Solar PV – utility scale | |
| | • Solar PV – residential | |
| | • EV batteries | |
| Commercialization | • Electric vehicles
| | • Solar thermal power plants | |
| | • Solid-state lighting | |
| | • Smart windows | |
| | • Advanced building materials | |
| Development | • Grid batteries | |
| | • CCS | |
| | • Offshore wind | |
| | • Small scale nuclear | |
| | • Digital power conversion | |
| | • Vehicle-to-grid integration | |
| | • Compressor-less air conditioning | |
2. GETTING CLOSER TO CUSTOMERS

Getting closer to the customers

- More decision units
- Pervasive digital life
- Green consumer & Social responsibility
- Sophistication
- Lifestyle consumer
- Polarization to low and high-end
- Individuation/Me-centricity
3. DEVELOPING NEW BUSINESS MODELS AND SERVICES

How to take advantage of the “home of the future” with smart meters, micro-generation, and a host of new services and appliances

The home of the future: example of a new single house

Decrease in energy needed from the grid by the HotF 2020, indexed, 100 = kWh of household consumption

How to capture value?

Moving from sales of commodity to services, i.e., from €/MWh to €/customer?

SOURCE: McKinsey Home of the Future Initiative
Big data is easier to capture in the power sector than in many other industries, and its potential value is rising.

Power sector players are well positioned to capture large amount of data.
- Tailored/new products & services
- Enhanced customer targeting
- Enabling of demand side management
- Optimized operations

Bubble sizes denote relative sizes of GDP.

1. Potential to create value. Some portion of the value created can be captured as profits.
2. Electricity and gas utilities.
3. Based on US GDP data.

SOURCE: McKinsey Global Institute
All in all, an innovation breakthrough in the EU power sector could be worth €70 billion to the EU economy in 2030, increasing thereafter.

Additional 2030 EU27 GDP, EUR billion (estimates)

- Electricity cost reduction: ~30
- Energy savings: ~30
- Macroeconomic benefits: ~10
- Additional benefits\(^1\)
- Total\(^2\): ~70 + x

\(^1\) Additional innovation benefits not included in this calculation could include reduced costs of balancing the power system, improved consumer convenience and value, additional economic benefits or contributions to EU objectives through accelerated electrification of transport and heat, and clean technology and other business opportunities that could be captured by European industry in the context of an expanded global market.

\(^2\) The estimate is of additional gross domestic product, and in total corresponds to 135 EUR per capita in 2030. The benefits would be shared between households and companies consuming energy, electric utilities and other companies in the electricity supply chain, and various other actors throughout the wider economy.

SOURCE: EURELECTRIC Innovation Action Plan Taskforce analysis
Innovation depends on a broad set of policy factors
The broad range of innovation means R&D is only a beginning – a wide range of policy factors act on and enable innovation

<table>
<thead>
<tr>
<th>1</th>
<th>RD&D funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pre-market instruments focused on knowledge production – including demonstration</td>
<td></td>
</tr>
<tr>
<td>- Funding (grants, tax credits, PPPs), risk reduction</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Support for commercialisation and deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Market interventions to promote step from RD&D towards commercial application and also to indirectly reward RD&D</td>
<td></td>
</tr>
<tr>
<td>- E.g., patents, subsidies, procurement, venture support</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Enabling setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regulation and infrastructure that provide incentives and prerequisites for the innovation process</td>
<td></td>
</tr>
<tr>
<td>- Market competition and regulation, infrastructure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Collaboration and networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Networks to promote and disseminate innovation and improve talent-pool:</td>
<td></td>
</tr>
<tr>
<td>- Networks, education, publication, standardisation</td>
<td></td>
</tr>
</tbody>
</table>
Effective R&D and demonstration is the seedbed of innovation
Public EU investment in R&D is growing, largely through increases in renewables and energy efficiency

IEA Europe public RD&D funding for energy technologies, 1980-2011¹
USD billions (PPP); 2011 prices

1 Data covers EU IEA member countries: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, Netherlands, Poland, Portugal, Slovak Republic, Spain, Sweden, and United Kingdom, as well as EU-level funding

Also, industry executives find that EU funding of power sector R&D suffers from fragmentation and lack of direction.

The majority of public funding is disbursed by Member States...

Central EU: 20%
Member States: 80%
2009

...but lack of coordination leads to fragmentation and duplication

‘R&D efforts are often duplicated across countries without coordination’
– EU policymaker

‘Policies on European level are required – boundaries between countries need to be broken’
– EU utility executive

‘We need one integrated European energy market with one European energy & environmental policy’
– EU utility executive

SOURCE: European Commission; SET Plan; Eurelectric, Innovation Action Plan Survey; CTO and policy expert interviews; EURELECTRIC Innovation Action Plan Taskforce analysis
Demonstration is central to power sector innovation but risks being deprioritised

Demonstration is needed...

‘The EU should sponsor development rather than research – a lot of research is not aligned with needs’
– EU utility executive

‘Policy needs to take into account that innovation in the electricity sector implies a demonstration phase after research and before roll out’
– EU utility executive

...but funding is concentrated on R&D

EU and Member State RD&D funding
% of total RD&D funds

- R&D
 - Member States: 85%
 - Central EU: 50%

- Demonstration
 - Member States: 15%
 - Central EU: 50%

SOURCE: European Commission; SET Plan; Eurelectric, Innovation Action Plan Survey; CTO and policy expert interviews; EURELECTRIC Innovation Action Plan Taskforce analysis
Innovation needs an enabling business environment
The need to go beyond R&D came out strongly from the survey of utility executives and innovation experts

“We need support to bring solutions from the R&D stage into the market”

“We need to support the whole learning curve, not just the R&D stage”

“We need to support the whole learning curve, not just the R&D stage”

“Develop policies that drive market adaptation rather than supporting basic research”

“The important role of policy is to help innovations get a hold in the market”

“Policies should focus on innovation to quickly incentivize market solutions”

EU policy has heavy focus on deployment to encourage innovation

“R&D”

Role in innovation: Feeds long-term pipeline of ideas, crucial role in key innovation of past decades

Limitations: Touches only part of innovation chain

EU track record: Now growing, but fall from 11% to 4% of public R&D, 1980-2011

EU energy R&D funding, 2011
EUR billion

<table>
<thead>
<tr>
<th>2011</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

“Deployment”

Role in innovation: Incentives for private R&D; enables industrialisation, learning by doing

Limitations: Risk of “picking winners” and going down dead ends

EU track record: Strong commitment, but focus on near-mature technologies?

EU RES subsidies, 2011
EUR billion

<table>
<thead>
<tr>
<th>2011</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

“Pricing”

Role in innovation: Technology-neutral deployment, competition between rival solutions

Limitations: Risk of “picking winners” and going down dead ends

Limitations: Unfeasibly high prices required for immature technologies

EU track record: ETS in the doldrums

EU ETS CO₂ prices
EUR / tCO₂

SOURCE: EURELECTRIC Innovation Action Plan Taskforce
Five actions to improve EU enabling of power sector innovation

1. **Adopt a systems approach** – make innovation policy a tool of energy policy through an integrated perspective on the overall power system

2. **Nurture public-private dynamics** – harvest the low-hanging fruit: innovation through a competitive, business-friendly, and risk-rewarding market framework

3. **Prioritise demonstration and commercialisation** – strengthen support mechanisms that take innovation beyond R&D

4. **Unlock downstream innovation** – put in place the enablers of a ‘new downstream’ set of services and offerings: competitive markets, smart regulation, and enabling infrastructure

5. **Create supportive governance for the innovation union** – improve coordination and governance of both EU-level and Member State support mechanisms
THANK YOU!

If you have any questions, do not hesitate to get in touch with us!

knoyens@eurelectric.org
snies@eurelectric.org

www.eurelectric.org