Hydro and geothermal development in Japan

April 9, 2013
Japan has a potential of 34.7GW of hydroelectric power
Conventional hydropower represents generation capacity of approx. 10% (21GW)

Source: Ministry of Economy, Trade and Industry (METI) Degen Kaihatsu no Gaiyou 2010
Development of Hydropower Generation in Japan

- Larger scale sites (>30MW) have already been developed
- Previous subsidies and RPS schemes were not enough to promote development of smaller sites

Large scale sites:
More efficient, but already tapped

Smaller scale sites:
Less efficient and more remote in location

FIT and other ways to support Hydropower Projects

- FIT scheme (July 2012) is expected to suit smaller-scale sites
- Other incentives and further deregulation would promote development

FIT Scheme
- FIT scheme to support development cost

Incentives
- Preferential taxation and loan schemes

De-regulation
- Clarification of licensing criteria regarding water rights etc.

Purchase rate and duration set for Feed-in-Tariff (FY2012)

<table>
<thead>
<tr>
<th>Procurement category</th>
<th>1MW or more but less than 30MW</th>
<th>0.2MW or more but less than 1MW</th>
<th>Less than 0.2MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tariff (exclusive tax)</td>
<td>25.3 US cents/kWh</td>
<td>30.5 US cents/kWh</td>
<td>35.8 US cents/kWh</td>
</tr>
<tr>
<td>Duration</td>
<td>20 years</td>
<td>20 years</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Rate: 1$ = 95 JPY

Feature s of Geothermal Power Generation

- Japan ranks 3rd in the world for potential geothermal resources
- Geothermal power accounts for 0.2% of total capacity and 0.3% of generated electricity in Japan
- No new capacity has been added since 1999

Geothermal resources by countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Potential Resources</th>
<th>Installed Capacity</th>
<th>Power Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>797</td>
<td></td>
<td>27,791</td>
</tr>
<tr>
<td>US</td>
<td>2,534</td>
<td></td>
<td>23,000</td>
</tr>
<tr>
<td>Japan</td>
<td>535</td>
<td></td>
<td>20,540</td>
</tr>
<tr>
<td>Mexico</td>
<td>953</td>
<td>6,000</td>
<td>2,534</td>
</tr>
<tr>
<td>Philippines</td>
<td>1,931</td>
<td>6,000</td>
<td>1,931</td>
</tr>
<tr>
<td>Iceland</td>
<td>172</td>
<td>5,800</td>
<td>172</td>
</tr>
<tr>
<td>NZ</td>
<td>436</td>
<td>3,650</td>
<td>436</td>
</tr>
<tr>
<td>Italy</td>
<td>791</td>
<td>3,267</td>
<td>791</td>
</tr>
</tbody>
</table>

Geothermal Power Production in Japan (1975-2009)

Source: *Denki Jigyo Binran 2011*, compiled by Federation of Electric Power Companies of Japan (FEPC)

Sources:

Issues & Solutions for Geothermal Projects

- Restriction by National Parks Law and hot spring business have left geothermal resources untapped
- Deregulation and financial support including FIT scheme will promote development in medium to long term
- Due to a long lead-time and high development cost caused by uncertainty in potential resources, risks for operators remain high

National Parks Law

Deregulation

Public Acceptance

Financial Activities for PR activities

High development risks

Subsidies for resource survey

Economic Efficiency

Purchase guarantee with FIT

Purchase rate and duration set for Feed-in-Tariff (FY2012)

<table>
<thead>
<tr>
<th>Procurement category</th>
<th>15MW or more</th>
<th>Less than 15MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tariff (exclusive tax)</td>
<td>27.4 US cents/kWh</td>
<td>42.1 US cents/kWh</td>
</tr>
<tr>
<td>Duration</td>
<td>15 years</td>
<td>15 years</td>
</tr>
</tbody>
</table>

Rate : 1$ = 95 JPY