ICT as an enabler of smart transport services and energy efficiency

EGRD – Mobility: Technology Priorities and Urban Planning Espoo, 22-23 May 2013

Matti Kutila, Raine Hautala and Eetu Pilli-Sihvola
VTT Technical Research Centre of Finland
Contents

- ICT-ITS research in VTT
- ICT in transport services
- Smart vehicles
- ITS management
- Case 1: ASSET-Road
- Case 2: Monitoring exhaust gases
- Summary
ICT - ITS Research in VTT

HUMAN CAPITAL
- 80-110 experts
- Experience of over 150 projects at ITS area
- Annual revenue about 5 M€
- 15-25 scientific journal articles and inventions per year

FACILITIES
- **Mobile Test Laboratory**: Vehicle with the extensive sensor setup (BMW 525d)
- **Driver Monitoring**: Vehicle with hidden driver monitoring equipment (VW Golf)
- **Driving Simulator**: Simulator with driver monitoring reference system (FaceLab)
- **Converging Networks Laboratory**: Facilities for studying various (wireless) communication aspects
ICT in smart traffic

Terminals

Smart vehicles

Service platforms

Users

Infrastructure
Role of ICT in transportation services

- **ICT is a key enabler** of energy efficient smart transport services:
 - Fast, mobile internet connections
 - Smartphone as the universal terminal
 - Common platforms enabling combining different services
- The major challenge is **interoperability of systems**
- Services supporting efficient mobility
 - **Flexible public transport** (changing modes, real-time route information) & multi-modality
 - **Services for smart vehicles** (e.g. driver support, safety, fuel optimization)
 - **Intelligent transport management** (e.g. CO₂ optimisation)
Public transportation and multi-modal services

- Encourage people to **use public transport** instead of passenger cars
- Demand **responsive transport**
 - Routes determined based on customer needs
- **Intelligent payment** systems
 - Making public transport easier to use
 - Virtual ticketing
 - NFC-enabled smartcards/smartphones
- **Ride-sharing**
 - Increasing the average occupancy of passenger cars
Service for Smart vehicles

- The aim is to make **driving more efficient and comfortable**
- Driving behaviour ↔ driver monitoring
- **Active guidance** to drive more eco-efficiently / Fuel-efficient route choices
- **Tyre-pressure** monitoring system
- Real-time **traffic information**
- Services for **electric vehicles**
 - Locating charging stations
 - Route planning and guidance based on expected range
Intelligent transport management

- Optimising the flow of traffic on the transport network
- Proactive transport management (predicting incidents based on traffic and weather conditions)
- Smart parking: information concerning free parking spaces
- Co-operative driving (e.g. eco-efficient intersection)
The ASSET-Road facts

- Total budget of the project was 8,1 M€ (the EC contribution: 6,1 M€)
- 19 partners from Europe, India and Tanzania
- Coordinator: PTV AG (Germany)
- Field test sites in Germany, Finland and France
- Timeline: July 2008 - Dec 2011
- Vision: “Integrated traffic surveillance and driver support”

See. www.project-asset.com
ASSET-Road - System overview

- VTT has developed a **mobile monitoring unit** which is capable to estimate actual traffic emission
- **The calculation module** computes the emission parameters in real-time
- **The database module** consists of data and emission estimation model

![Image of ASSET-Road system components]
ASSET-Road: Data analysis module

- The calculated **vehicle densities, speed and CO2 emissions** are shown in the web interface.
- The data is transmitted wirelessly to the **back-office servers** via cellular network.
Monitoring Exhaust Gas Emissions

- The road-side installed monitoring unit
- Measures the emission gasses like carbon dioxide (CO₂), nitrogen oxide (NO)
- Light beams of wavelength corresponding to each of the gas of interest i.e. CO, HC, NO, CO₂
- The measurement is made with using a spectrometer to detect optical absorption
Summary

- **1980 – 2000: research was safety driven**
 - In-vehicle sensors
 - Improvements in passive safety
- **2000 – 2015: eco-efficiency**
 - Communication between vehicles
 - Advanced sensor and interventions
 - CO₂ reduction
- **2015 – 2030: automated transportation**
 - Situation awareness
 - Eco-efficien
 - Computer aided vehicle control
VTT creates business from technology