IEA @ COP24

Accelerating climate ambition through clean energy transitions

The twenty-fourth session of the Conference of the Parties (COP24), convened under the Presidency of Poland, will be held in Katowice, Poland from 2-14 December 2018.

As the global energy authority, the IEA promotes climate action through cutting-edge analysis, data, expertise and policy advice that supports countries, companies and other key stakeholders. IEA analysis is key to tracking progress of global energy transitions towards Paris Agreement goals - under the Talanoa Dialogue and beyond - and helping drive further ambition of Nationally Determined Contributions.

Contact us: COP24@iea.org




A global energy strategy to meet our climate goals


With energy accounting for about 85% of global CO2emissions, meeting the long-term objectives of the Paris Agreement means fundamentally changing the way we produce and use energy. It will require a greater emphasis on energy efficiency and innovation, speeding up the deployment of low-carbon technologies, like solar PV and wind, accelerating the development of carbon capture, utilisation and storage (CCUS), and in some cases retiring existing assets.

As the global energy authority, the International Energy Agency provides cutting-edge data, rigorous analysis and real world solutions to support governments, industry and key stakeholders in achieving their objectives. Our work spans the full spectrum of energy technologies and policies that will play a role in clean energy transitions.

The IEA’s all-energy expertise can help governments be smarter about achieving their objectives of energy development and decarbonisation, ensuring universal energy access, lessening the health impacts of air pollution, providing affordability and maintaining energy security.

Where are we today?


Energy-related CO2 emissions are rising and will continue to do so unless governments change course. Without strong government policy, long-term international climate goals risk slipping out of reach. Global energy-related carbon emissions need to peak around 2020 and then enter a steep decline. But the IEA’s New Policies Scenario, based on current policies and plans, including the Nationally Determined Contributions, shows CO2 emissions growing out to 2040.

	European Union	North America	Other advanced economies	China	India	Latin America	Africa	Other developing economies	Sustainable Development Scenario
2010	3.561551982	6.297867399	2.533370368	7.810996225	1.580000755	1.019860025	0.992491397	6.535164361	30.33130251
2011	3.41263932	6.095521166	2.622663975	8.584845521	1.664179481	1.034614252	0.996083096	6.751816843	31.16236365
2012	3.377361899	5.870345236	2.687605201	8.831236466	1.800002834	1.095382217	1.054655155	6.772245383	31.48883439
2013	3.291993864	6.007472339	2.684817679	9.205215818	1.850715738	1.122648829	1.101653931	6.838135574	32.10265377
2014	3.103631108	6.00198524	2.632442209	9.139465889	2.014055795	1.160707125	1.147927162	6.938172728	32.13838726
2015	3.145243992	5.882194776	2.637964177	9.117816739	2.02476899	1.137407467	1.141867098	6.993640403	32.08090364
2016	3.124953577	5.798071602	2.664461709	9.071093213	2.075454549	1.098780245	1.15590919	7.064356997	32.05308108
2017	3.148205954	5.727135399	2.730879648	9.254291771	2.194742747	1.120299758	1.185259881	7.219542712	32.5807653
2018	3.05565495	5.790344912	2.674879794	9.488938025	2.288789513	1.105248376	1.211415076	7.323825918	32.71733187
2019	3.004439322	5.78091638	2.640757577	9.561873578	2.383977295	1.106386717	1.234726919	7.458487764	32.62204493
2020	2.938167702	5.702420595	2.592557725	9.612594715	2.485089419	1.11320456	1.250128	7.568405545	32.24612668
2021	2.872817668	5.625764974	2.560292036	9.645721818	2.60148982	1.119291901	1.265226316	7.666514858	31.78543659
2022	2.831034683	5.553044253	2.523702618	9.655031182	2.721703999	1.121819714	1.285116959	7.766225911	31.27930334
2023	2.77992437	5.506689382	2.476309273	9.656440248	2.842792353	1.125463888	1.308181462	7.874179218	30.70696468
2024	2.722823784	5.484931095	2.443428373	9.689334355	2.961367366	1.129128795	1.327839063	7.990492569	30.15707734
2025	2.663463759	5.452598316	2.421812492	9.689377637	3.076094682	1.13641181	1.354237656	8.108414305	29.53513792
2026	2.584844147	5.41438336	2.411477179	9.704297555	3.195817135	1.146522987	1.377677177	8.226002345	28.8296239
2027	2.500194971	5.381739357	2.39157557	9.711874933	3.315672082	1.155506824	1.398875423	8.353283215	28.03544919
2028	2.417226377	5.356871731	2.371421127	9.706571754	3.436572655	1.165525047	1.42407886	8.467842462	27.21715926
2029	2.336752014	5.326158543	2.355613865	9.68514845	3.557533384	1.174230398	1.447127628	8.598074999	26.39101221
2030	2.249293024	5.282700116	2.338802488	9.647178721	3.673166703	1.182654722	1.472449024	8.729673101	25.4815813
2031	2.163727573	5.238961083	2.318788871	9.604643191	3.789095967	1.194804588	1.491259991	8.861085605	24.55861866
2032	2.083454165	5.200163585	2.295449509	9.563475275	3.901569453	1.209993785	1.51438061	8.995104062	23.61460635
2033	2.029602581	5.160121128	2.275595499	9.502369152	4.018137539	1.224914968	1.540042786	9.127197602	22.70777584
2034	1.977268086	5.132928411	2.261193339	9.435452442	4.129955814	1.240375474	1.568740171	9.25949913	21.804754
2035	1.917283297	5.115387064	2.249135018	9.373630204	4.241681003	1.257514283	1.597856909	9.404669988	20.98192906
2036	1.873326215	5.097546563	2.231056716	9.310208468	4.346672771	1.27289432	1.626314264	9.52859599	20.20649606
2037	1.836192878	5.081018916	2.219709911	9.250714882	4.450815256	1.28835494	1.653486381	9.66442683	19.50990154
2038	1.792814023	5.063926208	2.225733888	9.189887486	4.551092676	1.305166908	1.682592932	9.800107189	18.8397596
2039	1.756441483	5.046015047	2.213601236	9.123505831	4.649023079	1.322144115	1.709186692	9.937835127	18.20241743
2040	1.718836942	5.03077013	2.199235953	9.054166604	4.738022793	1.335495477	1.73743354	10.06738362	17.64690866
{
	"chart":{
		"type":"area",
		"height":"40%"
	},
	"plotOptions":{
		"area":{
			"marker":{
				"enabled":false
			},
			"stacking":"normal"
		},
		"line":{
			"marker":{
				"enabled":false
			}
		}
	},
	"tooltip":{
		"pointFormat":"{series.name}"
	},
	"title":{
		"text":"CO2 emissions by region in the NPS"
	},
	"yAxis":{
		"title":{
			"text":"GtCO2"
		}
	},
	"xAxis":{
		"tickPositions":[2010,2020,2030,2040]
	},
	"series":[{
		"colorIndex":3
	}, {
		"colorIndex":2
	}, {
		"colorIndex":5
	}, {
		"colorIndex":7
	}, {
		"colorIndex":8
	}, {
		"colorIndex":1
	}, {
		"colorIndex":4
	}, {
		"colorIndex":6
	}, {
		"color":"#666666",
		"lineWidth":3,
		"type":"line",
		"dashStyle":"shortDash"
	}]
}

Very few clean energy technologies are on track

Clean energy technologies are gathering pace. But the IEA’s comprehensive tracking of clean energy technology progress shows that only 4 clean-energy technologies out of 38 are on track with what is needed under the Paris Agreement: solar photovoltaics (PV), electric vehicles (EVs), lighting and data centres.

Of the others, 23 need improvement and 11 are off track. Part of the reason is that fossil fuels are stubborn, still accounting for 81% of the global energy mix, a share almost unchanged in several decades.


Status of 38 clean energy technologies tracked by the IEA
Hover for more information



	CO2 Emissions	Blank
2000	23.01	0
2001	23.35	0
2002	23.75	0
2003	24.8	0
2004	25.97	0
2005	26.9	0
2006	27.75	0
2007	28.85	0
2008	29.01	0
2009	28.17	0
2010	30.26	0
2011	31.14	0
2012	31.39	0
2013	31.91	0
2014	32.11	0
2015	32.08	0
2016	32.07	0
2017	32.53	0
2018	0	32.9
{
	"title": {
    		"text": "Global energy-related CO2 emissions"
	},
	"tooltip": {
    		"pointFormat": "{point.total:.2f} Gt CO2"
	},
	"chart": {
		"type": "column"
	},
	"xAxis": {
		"tickInterval" : 1
	},
	"plotOptions": {
		"column": {
			"stacking": "normal",
			"borderWidth":0
		}
	},
	"legend":{
		"enabled":false
	},
	"yAxis": {
		"title": {
			"text": "Gt CO2"
		},
		"reversedStacks" : false
	},
	"series":[{
		"colorIndex":6
	}, {
		"color":"rgba(0,0,0,0)",
		"borderWidth":1,
		"borderColor":"#da8137",
		"dashStyle":"longDash",
		"tooltip":{
			"pointFormat":"Estimated record high"
		}
	}]
  }


	Annual change	2017	SDS Target
1990-2013 average	-1.463033605	0	0
2014	-2.862592071	0	0
2015	-2.468057026	0	0
2016	-2.268611633	0	0
2017	0	-1.692631735	0
2018-2040 average	0	0	-3.442427511
{
	"chart":{
		"type":"column",
		"height":"35%"
	},
	"plotOptions":{
		"column":{
			"stacking":"normal",
			"borderWidth":0
		}
	},
	"title":{
		"text":"Average annual change in energy intensity"
	},
	"yAxis":{
		"labels":{
			"format":"{value}%"
		}
	},
	"tooltip":{
		"valueSuffix":"%",
		"valueDecimals":1
	},
	"xAxis":{
		"type":"category",
		"opposite":true,
		"plotLines":[{
			"value":0.5,
			"width":1,
			"dashStyle":"shortDash",
			"color":"#ccc"
		}, {
			"value":4.5,
			"width":1,
			"dashStyle":"shortDash",
			"color":"#ccc"
		}]
	},
	"series":[{
		"colorIndex":3
	}, {
		"colorIndex":7
	}, {
		"colorIndex":0
	}]
}

Where do we need to go?


The IEA’s Sustainable Development Scenario (SDS) describes an integrated pathway for the global energy sector to meet the Paris Agreement’s goals, while also achieving universal energy access and substantially reducing the severe health impacts of air pollution. The CO2 emissions trajectory to 2040 is consistent with a long-term global average temperature rise of 1.7-1.8 °C above pre-industrial levels.

Compare SDS to scenarios with a temperature rise in 2100

 

Note: Scenarios drawn from the Scenario Explorer released alongside the IPCC Special Report on 1.5 C of global warming. See https://data.ene.iiasa.ac.at/iamc-1.5c-explorer/

But achieving this requires a deep transformation in energy production and use. In the SDS, efficiency gains mean energy demand stays flat to 2040, despite a doubling of the global economy. Coal demand peaks around 2020 – with oil following soon after – as renewables come to the fore.

Efficiency and renewables lead the way ...

The share of electricity generated from renewable sources rises from less than a quarter today to two-thirds in 2040, with solar PV and wind the fastest growing technologies. The share of electricity in total final energy consumption provides a pathway for clean energy transitions through the electrification of end use sectors, with high potential in transport and buildings, but more challenges in industry.

	Coal	Oil	Natural gas	Nuclear	Hydro	Bioenergy	Wind	Geothermal	Solar PV	Concentrating Solar Power	Marine
2000	6001.37	1211.83	2746.71	2590.62	2618.25	164.3	31.35	51.99	0.99	0.53	0.55
2005	7330.89	1134.89	3701.42	2767.95	2934.48	225.9	103.92	58.28	3.9	0.6	0.52
2010	8659.55	972.58	4804.81	2756.29	3445.32	360.32	341.4	68.12	32.18	1.65	0.1
2015	9543.36	970.57	5548.4	2570.17	3904.66	216.79	838.33	80.47	250.22	9.6	1.01
2016	9574.94	925.57	5781.07	2604.78	4049.3	568.93	957.29	81.66	327.84	10.47	1.03
2017	9858.09	939.63	5855.35	2636.77	4109.44	622.65	1084.85	87.48	434.62	11.03	1.1
2025	7193.03	604.83	6810.23	3302.55	5011.7	1039.1	2706.95	162.15	1939.55	53.8	3.95
2030	4847.21	413.45	6829.69	3887.85	5722.36	3124.65	4355.09	282.04	3267.95	183.83	14.95
2035	3050.19	274.32	6254.58	4534.47	6371.04	1646.41	6112.85	419.69	4806.41	462.22	37.63
2040	1981.54	197.12	5358.29	4960.43	6990.24	1967.79	7730.06	554.84	6409.03	855.41	77.79
{
	"chart":{
		"type":"area",
		"height":"45%"
	},
	"title":{
		"text":"Electricity generation by technology in the SDS"
	},
	"plotOptions":{
		"area":{
			"marker":{
				"enabled":false
			},
			"stacking":"normal"
		}
	},
	"yAxis":{
		"title":{
			"text":"TWh"
		},
		"reversedStacks":false
	},
	"xAxis":{
		"plotLines":[{
			"value":2017,
			"width":1,
			"color":"#ccc",
			"dashStyle":"shortDash",
			"label":{
				"text":"Historical",
				"rotation":0,
				"align":"right",
				"x":-10,
				"y":15
			}
		},{
			"value":2017,
			"width":0,
			"label":{
				"text":"Projections",
				"rotation":0,
				"align":"left",
				"x":10,
				"y":15
			}
		}]
	},
	"tooltip":{
		"pointFormat":"{series.name}"
	},
	"series":[{
		"colorIndex":7
	}, {
		"colorIndex":6
	}, {
		"colorIndex":2
	}, {
		"colorIndex":5
	}, {
		"colorIndex":3
	}, {
		"colorIndex":0
	}, {
		"colorIndex":4
	}, {
		"colorIndex":9
	}, {
		"colorIndex":8
	}, {
		"colorIndex":5
	}, {
		"colorIndex":1
	}]																				
}

... with much higher shares of EVs and biofuels

Global EV sales need to reach 900m by 2040. Last year, sales rose 54% to 1.1m (for a total stock of 3m) and EVs are on track to meet the SDS goal. Biofuel use would need to triple, driven by cost reductions of advanced biofuels, widespread sustainability governance and higher biofuel growth in aviation and marine transport. So far, it is not on track to meet these goals.

	Electric cars as share of global passenger car stock	Biofuel share of transport fuels
2000	0	0.507214086
2001	0	0.497643347
2002	0	0.567198785
2003	0	0.629537244
2004	0	0.720932444
2005	0.000184584	0.874583892
2006	0.000221147	1.089007432
2007	0.000273468	1.418241364
2008	0.000560232	1.893867859
2009	0.000822753	2.198161161
2010	0.001869042	2.340771803
2011	0.007181867	2.388981277
2012	0.019727334	2.631304065
2013	0.040983401	2.64218275
2014	0.073058803	2.71760194
2015	0.123714988	2.816443995
2016	0.183662638	2.854319336
2017	0.256813734	3.244992867
2018		
2019		
2020	0.910793482	4.140257238
2021		
2022		
2023		
2024		
2025	4.983535832	7.035423403
2026		
2027		
2028		
2029		
2030	13.9615851	10.05528006
2031		
2032		
2033		
2034		
2035	33.06073235	11.61924025
2036		
2037		
2038		
2039		
2040	50.65262345	13.29260752
{
	"chart":{
		"type":"line",
		"height":"45%"
	},
	"plotOptions":{
		"line":{
			"marker":{
				"enabled":false
			},
			"connectNulls":true
		}
	},
	"title":{
		"text":"Share of biofuels and electric vehicles in the SDS"
	},
	"tooltip":{
		"valueSuffix":"%",
		"valueDecimals":1
	},
	"yAxis":{
		"labels":{
			"format":"{value}%"
		}
	},
	"xAxis":{
		"tickInterval":5,
		"plotLines":[{
			"value":2017,
			"width":1,
			"color":"#ccc",
			"dashStyle":"shortDash",
			"label":{
				"text":"Historical",
				"rotation":0,
				"align":"right",
				"x":-10,
				"y":15
			}
		},{
			"value":2017,
			"width":0,
			"label":{
				"text":"Projections",
				"rotation":0,
				"align":"left",
				"x":10,
				"y":15
			}
		}]
	},
	"series":[{
		"colorIndex":6,
                "zoneAxis": "x",
                "zones": [{
                  "value": 2017
                },
                {
                  "dashStyle": "Dot"
                }]
	}, {
		"colorIndex":0,
                "zoneAxis": "x",
                "zones": [{
                  "value": 2017
                },
                {
                  "dashStyle": "Dot"
                }]
	}]
}

CCUS is critical

Carbon capture, storage and utilisation is critical to meeting climate goals while also strengthening energy security and boosting economic growth. Without CCUS as part of the solution, reaching international climate goals is practically impossible.

In the SDS, especially in industry, where certain applications make it challenging to replace coal, such as in power generation, CCUS technology can play an important role in decarbonisation.

	SDS Target	Iron and steel	Chemicals	Biofuels	Refining	Natural gas processing
2000		0	0.7	0	3	9.15
2010		0	0.7	0	3	18.25
2015		0	1.7	0	5	20.2
2017		0.8	1.7	1	5	20.2
2025		0.8	3.05	1	6.3	25.15
2030	400					
2040	1340					
{
  "chart": {
    "type": "area",
    "height": "45%"
  },
  "title":{
  	"text":"CCUS in industry and fuel transformation"
  },
  "tooltip": {
    "valueSuffix": " MtCO2",
"shared": true,
"valueDecimals": 1,
"footerFormat": "Total: {point.total} MtCO2"
  },
  "colors": [
    "#00b050",
    "#31869b",
    "#93cddd",
    "#92d050",
    "#b1a0c7",
    "#31869b"
  ],
  "plotOptions": {
    "area": {
      "stacking": "normal"
    },
    "series": {
      "marker": {
        "enabled": false
      }
    }
  },
  "yAxis": {
    "title": {
      "text": "MtCO2"
    }
  },
  "xAxis": {
    "plotBands": [
      {
        "from": 2000,
        "to": 2017,
        "color": "#fafafa",
        "label": {
          "text": "Historical"
        }
      },
{
        "from": 2017,
        "to": 2025,
        "label": {
          "text": "Project pipeline"
        },
"borderColor": "#ececec",
"borderWidth": 1
      }
    ]
  },
  "series": [
    {
"type": "line",
      "className": "noline",
      "marker": {
        "enabled": true
      },
      "dataLabels": {
        "enabled": true,
        "format": "{x} SDS Target",
        "style": {
          "color": "#4d4d4d"
        }
      },
"tooltip": {
"valueDecimals": 0
}
    }
  ]
}

What do we need to do?


Thanks to technology improvements and cost declines, and with well-integrated policy packages, the Sustainable Development Scenario would require cumulative overall energy sector investment just 13% higher than under current policies and plans. But a rapid energy transition is not inevitable, it is a route that needs to be chosen and led by governments. Our analysis shows that 70% of energy supply investments are controlled by state-directed entities or respond to regulation providing guaranteed revenues.

Recommended actions

  • Incentives: Redirect investment to efficiency and clean energy technologies by optimising pricing and subsidies
  • Efficiency: Reinvigorate energy efficiency improvements through standards and financing policies
  • Smart electrification: Promote greater electrification of energy services along with clean electricity supply and develop the flexibility and security of electricity systems
  • Uncover blind spots: Focus on clean end-use technologies in transport, buildings and industry
  • Innovation: Boost innovation with clean technology research, including for carbon capture, utilisation and storage
  • Policy alignment: Create well-integrated policy packages that align renewable energy, efficiency & climate goals with other development objectives
  • Cleaner access: Pursue energy access solutions without compromising environmental goals, through clean energy solutions and off- and minigrid connections
  • Better data: Improve energy data and technology tracking processes

Learn more about how the IEA supports global clean-energy transitions


TCEP is a comprehensive scorecard of 38 sectors and technologies. It includes the most up-to-date information for where technologies are today and where they need to be according to the IEA’s Sustainable Development Scenario, a pathway to reach the Paris Agreement well below 2°C climate goal, deliver universal energy access and significantly lower air pollution.

Understanding the dynamic interplay of energy markets, technology and policy has never been more critical. The IEA flagship publication World Energy Outlook (WEO), widely regarded as the gold standard of energy analysis, provides strategic insight on what today’s policy and investment decisions mean for long-term trends.

The Clean Energy Transitions Programme (CETP) leverages the IEA’s unique energy expertise across all fuels and technologies to accelerate global clean-energy transitions, particularly in major emerging economies. The Programme includes collaborative analytical work, technical cooperation, training and capacity building and strategic dialogues.

Our new Innovation Tracking Framework highlights 100 innovation gaps across 38 clean energy technologies to help identify opportunities for both public and private investment.

Energy efficiency is a key pillar of the IEA’s work, central to strengthening energy security and supporting clean energy transitions. The IEA provides data, training, policy analysis and tracking of global trends, to support our members and partner countries scale up their efforts on energy efficiency.

The IEA is at the forefront of global efforts to assess and analyse persistent energy access deficit, providing annual country-by-country data on access to electricity and clean cooking and the main data source for tracking official progress towards SDG targets on renewables and energy efficiency.

The IEA family includes 30 members and 8 Association countries, and has grown significantly over the past five years, today representing almost 75% of global energy demand.