Fission is a reaction when the nucleus of an atom, having captured a neutron, splits into two or more nuclei, and in so doing, releases a significant amount of energy as well as more neutrons. These neutrons then go on to split more nuclei and a chain reaction takes place. Fusion is a process where nuclei collide and join together to form a heavier atom, usually deuterium and tritium. When this happens a considerable amount of energy gets released at extremely high temperatures. At extreme temperatures, electrons are separated from nuclei and a gas becomes a plasma—a hot, electrically charged gas.

More action needed for sustainable, affordable, competitive German Energiewende

Review of German energy policies calls for cost reductions, investment in networks and closer regional co-operation More »»

Status of nuclear programmes, end-2013

Central scenario of WEO-2014's in-depth focus on nuclear power sees installed capacity grow by 60% to 2040 More »»

Taking a fresh look at the future of nuclear power

Joint IEA-NEA roadmap tracks latest developments and opportunities for crucial low-carbon energy source More »»

About nuclear

Nuclear fission is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. There is great potential for new developments in nuclear energy technology to enhance nuclear’s role in a sustainable energy future. Nevertheless, important barriers to a rapid expansion of nuclear energy remain. Governments need to set clear and consistent policies on nuclear to encourage private sector investment. Gaining greater public acceptance will also be key, and this will be helped by early implementation of plans for geological disposal of radioactive waste, as well as continued safe and effective operation of nuclear plants.

Nuclear fusion is a process where nuclei collide and join together to form a heavier atom, usually deuterium and tritium. When this happens a considerable amount of energy gets released at extremely high temperatures. At extreme temperatures, electrons are separated from nuclei and a gas becomes a plasma — a hot, electrically charged gas. The fuel (created when deuterium combines with tritium) is abundant; it gives off very little radioactivity; there is no need for underground storage; and there is no environmental risk of highly radioactive fuel leakage in case of an accident, the plasma dissipates. A plant producing electricity from a nuclear fusion reaction could provide baseload power with little adverse environmental impacts. For this reason fusion is the focus of ongoing research in IEA Member countries and around the world. The International Thermonuclear Experimental Reactor (ITER) project aims to test the viability of a fusion reactor operating over extended periods. 

 

Our focus

The IEA Fusion Power Co-ordinating Committee (FPCC) provides a platform for stakeholders to share results of fusion activities worldwide. These stakeholders include the ITER (International Thermonuclear Experimental Reactor) project, the International Atomic Energy Agency, the European Commission (EURATOM), the International Tokamaks Physics Activity (ITPA), and Nuclear Energy Agency (experiments database).

The FPCC also oversees the activities of eight fusion Technology Collaboration Programmes.  These independent groups of experts carry out research and development activities in areas ranging from technology to environmental and economic aspects of fusion power. Their work is directly relevant to the ITER project and the "beyond-ITER" programme, which focuses on fusion power plants, and the economic, environmental, safety and social aspects of fusion power.

In 2015 the IEA together with the Nuclear Energy Agency published the latest edition of its Technology Roadmap: Nuclear Energy, along with a foldout; both are also available in Chinese

 

Fast facts

  • Fusion plasma reaches temperatures of nearly 150 million degrees Celsius