energy Russia energy china flag

ETI banner Energy technology initiatives

There are no quick fixes to long-term energy challenges. To find solutions, governments and industry benefit from sharing resources and accelerating results. For this reason the IEA enables independent groups of experts - the Energy Technology Initiatives, or ETIs1.


Participants in the Geothermal study logging (testing) a geothermal well to determine how to reduce costs.*

Drilling down geothermal costs

Policy context
Electricity generation from high-temperature geothermal heat is the only renewable energy source that can provide continuous, base-load power for many years with no fuel costs and with minimal environmental impact. Geothermal steam can be used in district heating networks or for industrial processes, and the lower-temperature heat from the ground can be used for building heating and cooling. Policies and measures to support geothermal include economic incentives such as feed-in tariffs, tax incentives and renewable portfolio standards.

The goal of the ETI focusing on geothermal energy (Geothermal) is to provide a framework for international co-operation on R&D. Activities include information sharing; developing best practice on the use of technologies and techniques; exploration, development and utilisation of geothermal; and producing and disseminating authoritative analysis and databases. There are currently 15 Contracting Parties, including Iceland and Mexico, as well as five Sponsors.

Geothermal wells are more expensive to drill than oil and gas wells, and these costs increase according to the depth. These costs can represent more than half of the capital cost for a deep geothermal power project. Therefore reducing these costs is a primary focus for the industry.

The goal of one Geothermal project, Advanced Geothermal Drilling and Logging Technologies, is to develop a better understanding of these complex processes in order to identify opportunities for reducing these costs.

Geothermal drilling practices for wells destined for direct use (low temperature) and electricity generation (high temperature) require careful planning and design to reduce the time to full exploitation.

Technical challenges due to siting, water or steam quality and composition, and equipment; physical constraints such as the large diameter of the wells; and the unique character of each well, even wells in close proximity, are also important factors to consider. The project also considered indirect costs relating to the need to re‑inject fluids to maintain pressure. Optimal design criteria were established for a number of parameters, including drilling and completion programmes; drilling practices for cost avoidance; problem diagnosis and remediation during slim-hole drilling; trouble avoidance, well testing; geophysical logging; and preserving the wellbore.

Costs and risks of emerging technologies, in particular deep drilling, were explored. Drilling with casing was highlighted as a best practice as it reduces time spent and has been used successfully to drill through unstable formations. Expandable tubes and feedback processes were also examined. The results of the project, including case studies, are compiled in the Handbook of Best Practices for Geothermal Drilling, available free from the Geothermal IA website. 

Photo courtesy of Sandia National Laboratories

Current projects

  • Advanced geothermal drilling and logging technologies
  • Direct use of geothermal energy
  • Data collection and information
  • Environmental impacts of geothermal development
  • Enhanced geothermal systems
  • Induced seismicity

For more information:


1.Information or material of the IEA Energy Technology Initiatives, or ETIs (formally organised under the auspices of an Implementing Agreement), including information or material published on this website, does not necessarily represent the views or policies of the IEA Secretariat or of the IEA’s individual Member countries. The IEA does not make any representation or warranty (express or implied) in respect of such information (including as to its completeness, accuracy or non-infringement) and shall not be held liable for any use of, or reliance on, such information.