Working together to ensure reliable, affordable and clean energy

Technology Roadmap: Wind Energy - 2013 edition

Technology Roadmap: Wind Energy - 2013 edition
Download publication

Edition: 2013
63 pages

Overview

The IEA Wind Power Technology Roadmap 2013 Edition recognises the very significant progress made since the first edition was published in 2009. The technology continues to improve rapidly, and costs of generation from land-based wind installations continue to fall. Wind power is now being deployed in countries with good resources without any dedicated financial incentives.

The 2013 Edition targets an increased share (15% to 18%) of global electricity to be provided by wind power in 2050, compared to 12% in the original roadmap of 2009. However, increasing levels of low-cost wind still require predictable, supportive regulatory environments and appropriate market designs. The challenges of integrating higher levels of variable wind power into the grid need to be addressed. For offshore wind, much remains to be done to develop appropriate large-scale systems and to reduce costs.

The 2013 Wind Power Roadmap also provides updated analysis on the barriers that exist for the technology and suggests ways to address them, including legal and regulatory recommendations.

Wind Energy graph with title

Key Findings

Since 2008, wind power deployment has more than doubled, approaching 300 gigawatts (GW) of cumulative installed capacities, led by China (75 GW), the United States (60 GW) and Germany (31 GW). Wind power now provides 2.5% of global electricity demand – and up to 30% in Denmark, 20% in Portugal and 18% in Spain. Policy support has been instrumental in stimulating this tremendous growth.

Progress over the past five years has boosted energy yields (especially in low-wind-resource sites) and reduced operation and maintenance (O&M) costs. Land-based wind power generation costs range from USD 60 per megawatt hour (USD/MWh) to USD 130/ MWh at most sites. It can already be competitive where wind resources are strong and financing conditions are favourable, but still requires support in most countries. Offshore wind technology costs levelled off after a decade-long increase, but are still higher than land-based costs.

This roadmap targets 15% to 18% share of global electricity from wind power by 2050, a notable increase from the 12% aimed for in 2009. The new target of 2 300 GW to 2 800 GW of installed wind capacity will avoid emissions of up to 4.8 gigatonnes (Gt) of carbon dioxide (CO2) per year.

Achieving these targets requires rapid scaling up of the current annual installed wind power capacity (including repowering), from 45 GW in 2012 to 65 GW by 2020, to 90 GW by 2030 and to 104 GW by 2050. The annual investment needed would be USD 146 billion to USD 170 billion.

The geographical pattern of deployment is rapidly changing. While countries belonging to the Organisation for Economic Co-operation and Development (OECD) led early wind development, from 2010 non-OECD countries installed more wind turbines. After 2030, non-OECD countries will have more than 50% of global installed capacity.

While there are no fundamental barriers to achieving – or exceeding – these goals, several obstacles could delay progress including costs, grid integration issues and permitting difficulties.

This roadmap assumes the cost of energy from wind will decrease by as much as 25% for land-based and 45% for offshore by 2050 on the back of strong research and development (R&D) to improve design, materials, manufacturing technology and reliability, to optimise performance and to reduce uncertainties for plant output. To date, wind power has received only 2% of public energy R&D funding: greater investment is needed to achieve wind’s full potential.

Related links: